Preview

Russian neurological journal

Advanced search

Ataxia with Impaired DNA Repair in Adults: A Case Series and Review of the Literature

https://doi.org/10.30629/2658-7947-2020-25-2-28-36

Abstract

Introduction. Ataxia with impaired DNA repair is a group of inherited diseases with a wide range of neurological and extraneural manifestations. There are some difficulties in the differential diagnosis of this group of ataxias due to significant clinical polymorphism. Objective. To analyze the clinical presentation, laboratory and instrumental examinations data of a series of genetically confirmed cases of ataxia with impaired DNA repair in adult patients. Material and methods. 55 patients with ataxia of degenerative origin were examined. Clinical evaluation, nerve velocity study, brain MRI, alpha-fetoprotein, immunoglobulins, cholesterol and albumin, creatine phosphokinase activity were performed. Massive parallel sequencing (MPS) was used for genotyping, including the original multigene panel. Results. 8 (14.5%) patients with various forms of ataxia with impaired DNA repair were verified: 5 patients with ataxia-telangiectasia, 3 — with ataxia with oculomotor apraxia types 1 and 2. The clinical features of this forms are characterized, the prevalence of atypical forms of ataxia-telangiectasia in a sample of Russian adult patients is revealed. Phenotypes of ataxia with oculomotor apraxia of the 1 and 2 types corresponded to the classical presentation. Several identified mutations in the ATM and SETX genes are described for the first time. Conclusion. Ataxia with impaired DNA repair is a common group of ataxias in adult Russian patients. They are represented by ataxia-telangiectasia, ataxia with oculomotor apraxia types 1 and 2, often due to new mutations. MPS is the method of choice for genotyping of these forms of ataxia.

About the Authors

E. P. Nuzhnyi
Research Center of Neurology
Russian Federation

Nuzhnyi Evgenii Petrovich — Neurologist of Department of Neurogenetics

Moscow



S. A. Klyushnikov
Research Center of Neurology
Russian Federation
Moscow


N. Yu. Abramycheva
Research Center of Neurology
Russian Federation
Moscow


E. Yu. Fedotova
Research Center of Neurology
Russian Federation
Moscow


M. N. Andreev
Research Center of Neurology
Russian Federation
Moscow


A. S. Vetchinova
Research Center of Neurology
Russian Federation
Moscow


S. N. Illarioshkin
Research Center of Neurology
Russian Federation
Moscow


References

1. McKinnon P.J. DNA repair deficiency and neurological disease. Nature Reviews Neuroscience. 2009;10(2):100–112. https://doi.org/10.1038/nrn2559.

2. Ratnaparkhe M., Hlevnjak M., Kolb T., Jauch A., Maass K.K. et al. Genomic profiling of Acute lymphoblastic leukemia in ataxia telangiectasia patients reveals tight link between ATM mutations and chromothripsis. Leukemia. 2017;31(10):20482056. https://doi.org/10.1038/leu.2017.55.

3. Teive H.A.G., Moro A., Moscovich M., Arruda W.O., Munhoz R.P., Raskin S., Ashizawa T. Ataxia-telangiectasia A historical review and a proposal for a new designation: ATM syndrome. Journal of the Neurological Sciences. 2015;355(1–2):3–6. https://doi.org/10.1016/j.jns.2015.05.022.

4. Cortese A., Simone R., Sullivan R. et al. Biallelic expansion of an intronic repeat in RFC1 is a common cause of late-onset ataxia. Nat Genet. 2019;51(4):649–658.

5. Rudenskaya G.E., Kurkina M.V., Zaharova E.Y. Ataxia with oculomotor apraxia: clinical and genetic characteristics and DNA diagnostics. Korsakov journal of neurology and psychiatry. 2012;112(10):58–63. (In Russian).

6. Gilmore E.C. DNA repair abnormalities leading to ataxia: shared neurological phenotypes and risk factors. Neurogenetics. 2014;15(4):217–228. https://doi.org/10.1007/s10048-0140415-z.

7. Rothblum-Oviatt C., Wright J., Lefton-Greif M.A., McGrathMorrow S.A., Crawford T.O., Lederman H.M. Ataxia telangiectasia: a review. Orphanet Journal of Rare Diseases. 2016;11(1). https://doi.org/10.1186/s13023-016-0543-7.

8. Abramucheva N. U., Fedotova E.U., Klushnikov S.A. Original targeted genetic panel for the diagnosis of neurodegenerative diseases based on next-generation sequencing: first experience of application. Modern technologies in medicine. 2016;8(4):185–190. (In Russian). https://doi.org/10.17691/stm2016.8.4.23.

9. Ruzkova O.P., Kardumon O.L., Prohorchuk E.B., Konovalov F.A., Maslennikov A.B., Stepanov V.A., Afanasev A.A., Zaklazminskaya E.V., Kostareva A.A., Pavlov A.E., Golubenko M.V., Polakov A.V., Kutsev S.I. Guide to interpreting data obtained by mass parallel sequencing (MPS) methods. Medical genetics. 2017;16(7):4–17. (In Russian).

10. Cavalieri S., Funaro A., Porcedda P., Turinetto V., Migone N., Gatti R.A., Brusco A. ATM mutations in Italian families with ataxia telangiectasia include two distinct large genomic deletions. Human Mutation. 2006;27(10):1061–1061. https://doi.org/10.1002/humu.9454.

11. Mosesso P., Piane M., Palitti F., Pepe G., Penna S., Chessa L. The novel human gene aprataxin is directly involved in DNA singlestrand-break repair. CMLS Cellular and Molecular Life Sciences. 2005;62(4):485–491. https://doi.org/10.1007/s00018-004-4441-0.

12. Ferrarini M., Squintani G., Cavallaro T., Ferrari S., Rizzuto N., Fabrizi G.M. A novel mutation of aprataxin associated with ataxia ocular apraxia type 1: Phenotypical and genotypical characterization. Journal of the Neurological Sciences. 2007;260(1–2):219–224. https://doi.org/10.1016/j.jns.2007.05.015.

13. Anheim M., Monga B., Fleury M., Charles P., Barbot C., Salih M. et al. Ataxia with oculomotor apraxia type 2: clinical, biological and genotype/phenotype correlation study of a cohort of 90 patients. Brain. 2009;132(10):2688–2698. https://doi.org/10.1093/brain/awp211.

14. Renaud M., Moreira M.-C., Ben Monga B., Rodriguez D., Debs R., Charles P. et al. Clinical, Biomarker, and Molecular Delineations and Genotype-Phenotype Correlations of Ataxia With Oculomotor Apraxia Type 1. JAMA Neurology. 2018;75(4):495. https://doi.org/10.1001/jamaneurol.2017.4373.

15. Moin M., Aghamohammadi A., Kouhi A., Tavassoli S., Rezaei N., Ghaffari S.-R. et al. Ataxia-Telangiectasia in Iran: Clinical and Laboratory Features of 104 Patients. Pediatric Neurology. 2007;37(1):21–28. https://doi.org/10.1016/j.pediatrneurol.2007.03.002.

16. Suspitsin E., Sokolenko A., Bizin I., Tumakova A., Guseva M., Sokolova N. et al. ATM mutation spectrum in Russian children with ataxia-telangiectasia. European Journal of Medical Genetics. 202;63(1):103630. https://doi.org/10.1016/j.ejmg.2019.02.003.

17. Rudenskaya G.E., Shchagina O.A., Ampleeva M.A., Konovalov F.A. Аtaxia-telangiectasia with rare phenotype and unusual pedigree. S.S. Korsakov journal of neurology and psychiatry. 2019;119(6):101–106. (In Russian). https://doi.org/10.17116/jnevro2019119061

18. Halaby M.-J., Hibma J.C., He J., Yang D.-Q. ATM protein kinase mediates full activation of Akt and regulates glucose transporter 4 translocation by insulin in muscle cells. Cellular Signalling. 2008;20(8):1555–1563. https://doi.org/10.1016/j.cellsig.2008.04.011.

19. Levy A., Lang A.E. Ataxia-telangiectasia: A review of movement disorders, clinical features, and genotype correlations. Movement Disorders. 2018;33(8):1238–1247. https://doi.org/10.1002/mds.27319.

20. Zhou S., Gu L., He J., Zhang H., Zhou M. MDM2 Regulates Vascular Endothelial Growth Factor mRNA Stabilization in Hypoxia. Molecular and Cellular Biology. 2011;31(24):49284937. https://doi.org/10.1128/mcb.06085-11.

21. Anheim M., Tranchant C., & Koenig, M. The Autosomal Recessive Cerebellar Ataxias. New England Journal of Medicine. 2012;366(7):636–646. https://doi.org/10.1056/nejmra1006610.

22. Manto M., Huisman T. The Cerebellum: disorders and treatment. Elsevier, 2018.

23. Renshaw A. Henry’s Clinical Diagnosis and Management by Laboratory Methods. Advances in Anatomic Pathology. 2007;14(2);147:1342. https://doi.org/10.1097/pap.0b013e31803255cc.

24. Nanetti L., Cavalieri S., Pensato V., Erbetta A., Pareyson D., Panzeri M. et al. SETX mutations are a frequent genetic cause of juvenile and adult onset cerebellar ataxia with neuropathy and elevated serum alpha-fetoprotein. Orphanet Journal of Rare Diseases. 2013;8(1):123. https://doi.org/10.1186/1750-1172-8-123.

25. Yoon G., Caldecott K.W. Nonsyndromic cerebellar ataxias associated with disorders of DNA single-strand break repair. The Cerebellum: Disorders and Treatment. Elsevier, 2018. https://doi.org/10.1016/b978-0-444-64189-2.00007-x.

26. Bielorai B., Fisher T., Waldman D., Lerenthal Y., Nissenkorn A., Tohami T. et al. Acute Lymphoblastic Leukemia in Early Childhood as the Presenting Sign of Ataxia-Telangiectasia Variant. Pediatric Hematology and Oncology. 2013;30(6):574–582. https://doi.org/10.3109/08880018.2013.777949.

27. Tang S.Y., Shaikh A.G. Past and Present of Eye Movement Abnormalities in Ataxia-Telangiectasia. The Cerebellum. 2018;18(3):556–564. https://doi.org/10.1007/s12311-0180990-x.

28. Saunders-Pullman R.J., Gatti R. Ataxia-telangiectasia: Without ataxia or telangiectasia? Neurology. 2009;73(6):414–415. https://doi.org/10.1212/wnl.0b013e3181b39140.

29. Verhagen M., Abdo W., Willemsen M., Hogervorst F., Smeets D., Hiel J. et al. Clinical spectrum of ataxia-telangiectasia in adulthood. Neurology. 2009;73(6):430–437. https://doi.org/10.1212/wnl.0b013e3181af33bd.

30. Micol R., Ben Slama L., Suarez F., Le Mignot L., Beauté J., Mahlaoui N. et al. Morbidity and mortality from ataxiatelangiectasia are associated with ATM genotype. Journal of Allergy and Clinical Immunology. 2011;128(2):382–89. https://doi.org/10.1016/j.jaci.2011.03.052.

31. Schieving J.H., de Vries M., van Vugt J.M.G., Weemaes C., van Deuren M., Nicolai J., et al. Alpha-fetoprotein, a fascinating protein and biomarker in neurology. European Journal of Paediatric Neurology. 2014;18(3):243–248. https://doi.org/10.1016/j.ejpn.2013.09.003.

32. Al–Baradie R. & Chaudhary M. Ataxia-telangiectasia: future prospects. The Application of Clinical Genetics. 2014;7:159–164. https://doi.org/10.2147/tacg.s35759.

33. Salman M.S. Epidemiology of Cerebellar Diseases and Therapeutic Approaches. The Cerebellum. 2017;17(1):4–11. https://doi.org/10.1007/s12311-017-0885-2.

34. Bennett C.L., Dastidar S.G., Ling S.–C., Malik B., Ashe T., Wadhwa M. et al. Senataxin mutations elicit motor neuron degeneration phenotypes and yield TDP-43 mislocalization in ALS4 mice and human patients. Acta Neuropathologica. 2018;136(3):425–443. https://doi.org/10.1007/s00401-0181852-9.

35. Brugger F., Schüpbach M., Koenig M., Müri R., Bohlhalter S., Kaelin–Lang A. et al. The Clinical Spectrum of Ataxia with Oculomotor Apraxia Type 2. Movement Disorders Clinical Practice. 2014;1(2):106–109. https://doi.org/10.1002/mdc3.12021.

36. Klushnikov S.A., Illarioshkin S.N., Markova E.D., Glotova N.A., Fedin P.A., Ivanova-Smolenskaya I.A. Family case of ataxia with oculomotor apraxia: the first observation in the Russian population. Annals of clinical and experimental neurology. 2007;1(2):34–39. (In Russian).

37. Rudenskaya G., Marakhonov A., Shchagina O., Lozier E., Dadali E., Akimova I. et al. Ataxia with Oculomotor Apraxia Type 4 with PNKP Common “Portuguese” and Novel Mutations in Two Belarusian Families. Journal of Pediatric Genetics. 2019;8(2):58–62. https://doi.org/10.1055/s-0039-1684008.

38. Yoon G., Caldecott K.W. Nonsyndromic cerebellar ataxias associated with disorders of DNA single-strand break repair. The Cerebellum: Disorders and Treatment. Elsevier, 2018. https://doi.org/10.1016/b978-0-444-64189-2.00007-x.


Review

For citations:


Nuzhnyi E.P., Klyushnikov S.A., Abramycheva N.Yu., Fedotova E.Yu., Andreev M.N., Vetchinova A.S., Illarioshkin S.N. Ataxia with Impaired DNA Repair in Adults: A Case Series and Review of the Literature. Russian neurological journal. 2020;25(2):28-36. (In Russ.) https://doi.org/10.30629/2658-7947-2020-25-2-28-36

Views: 4066


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2658-7947 (Print)
ISSN 2686-7192 (Online)