Personalized rehabilitation assessment of locomotor functions in Parkinson disease using three-dimensional video analysis of motions
https://doi.org/10.30629/2658-7947-2021-26-1-23-33
Abstract
Parkinson disease (PD) is one of the most common neurodegenerative diseases. Its main clinical manifestation is movement disorders. The study of innovative objective methods for the diagnosis and rehabilitation of movement disorders in PD is relevant and in demand taking into account the slowly progressive course of the disease and the complex set of symptoms that subsequently forms a characteristic movement pattern. This article provides an example of a personalized rehabilitation assessment of biomechanical manifestations of the gait function of a patient with exacted diagnosis, stage 3.5 PD according to Hoehn and Yahr, by means of the method of three-dimensional motion video analysis using the Vicon Motion Capture Systems soft-hardware complex. The patient has postural and gait disorders. This method was applied after a rehabilitation course based on the activation of lifting the foot from the support surface (“back push”). Changes in the tempo and rhythm parameters of gait in a patient with PD in comparison to a healthy person were revealed: acceleration of walking pace with shortening of the length of single and double step, a decrease in the time of limb advancement, acceleration of the moment of heel rise and a decrease in walking pace. Analysis of the locomotion also revealed a decrease in the amplitude of flexion-extension in the coxofemoral joint, knee joint and tibio-tarsic on the side with more pronounced Parkinsonism. Insufficient knee flexion and hip extension, excessive dorsal flexion of the foot with insufficient plantar flexion were noted. Revealing the last features of locomotion in a particular case allows one to make a plan for a targeted personalized rehabilitation program for a given patient. Thus, the method of three-dimensional video analysis is a valuable diagnostic tool that makes it possible to objectively assess the existing violations of locomotion and identify the targets of rehabilitation.
About the Authors
S. V. ProkopenkoRussian Federation
660022, Krasnoyarsk;
660037, Krasnoyarsk
E. Yu. Mozheiko
Russian Federation
660022, Krasnoyarsk;
660037, Krasnoyarsk
M. V. Abroskina
Russian Federation
660022, Krasnoyarsk;
660037, Krasnoyarsk
V. S. Ondar
Russian Federation
660022, Krasnoyarsk;
660037, Krasnoyarsk
S. B. Ismailova
Russian Federation
660022, Krasnoyarsk;
660037, Krasnoyarsk
S. A. Subocheva
Russian Federation
660022, Krasnoyarsk
A. A. Khomchenkova
Russian Federation
660022, Krasnoyarsk
V. A. Gurevich
Russian Federation
660022, Krasnoyarsk
E. M. Zubritskaya
Russian Federation
660022, Krasnoyarsk
A. B. Malkov
Russian Federation
660037, Krasnoyarsk
S. N. Kondratyev
Russian Federation
660037, Krasnoyarsk
References
1. Levin O.S., Fedorova N.V. Parkinson’s disease. 3-e izd. M.: MEDpress-inform; 2006:352. (In Russian)
2. Doherty K.M., van de Warrenburg B.P., Peralta M.C., Silveira-Moriyama L., Azulay J.P., Gershanik O.S., Bloem B.R. Postural deformities in Parkinson’s disease. The Lancet Neurology. 2011;10(6):538–49. https://doi.org/10.1016/S1474-4422(11)70067-9
3. Watanabe K., Hirano T., Katsumi K., Ohashi M., Shoji H., Hasegawa K., Yamazaki A., Ishikawa A., Koike R., Endo N., Nishizawa M., Shimohata T. Characteristics of spinopelvic alignment in Parkinson’s disease: comparison with adult spinal deformity. Journal of Orthopedic Science. 2017;22(1):16–21. https://doi.org/10.1016/j.jos.2016.09.013
4. Ailon T., Smith J.S., Shaffrey C.I., Lenke L.G., Brodke D., Harrop J.S., Fehlings M., Ames C.P. Degenerative spinal deformity. Neurosurgery. 2015;77(4):S75–91. https://doi.org/10.1227/NEU.0000000000000938
5. Borodulina I.V., Arestov S.O., Gushcha A.O. Features of degenerative lesions of the spine in patients with postural disorders associated with Parkinson’s disease. Nervnye bolezni. 2019; 2:40–45. (In Russian) https://doi.org/10.24411/2226-0757-2019-12103
6. Djaldetti R., Mosberg-Galili R., Sroka H., Merims D., Melamed E. Camptocormia (bent spine) in patients with Parkinson’s disease — characterization and possible pathogenesis of an unusual phenomenon. Movement. Disorders. 1999;14(3):443–7. https://doi.org/10.1002/1531-8257(199905)14:3<443::aidmds1009>3.0.co;2-g
7. Vialle R., Levassor N., Rillardon L., Templier A., Skalli W., Guigui P. Radiographic analysis of the sagittal alignment and balance of the spine in asymptomatic subjects. The Journal of Bone and Joint Surgery. American volume. 2005;87(2):260–7. https://doi.org/10.2106/JBJS.D.02043
8. Azher S.N., Jankovic J. Camptocormia: pathogenesis, classification, and response to therapy. Neurology. 2005; 65(3):355–9. https://doi.org/10.1212/01.wnl.0000171857.09079.9f
9. Levin O.S., Artem’ev D.V., Bril’ E.V., Kulua T.K. Parkinson’s disease: modern approaches to diagnosis and treatment. M.: Prakticheskaya meditsina; 2017; t. 1. (In Russian)
10. Gurskiy I.S., Likhachev S.A., Vashchilin V.V., Bunyak A.G. Violations of voluntary postural control in Parkinson’s disease and the possibility of their rehabilitation according to video analysis of movements. Ural’skiy meditsinskiy zhurnal. 2018;11:27–31. (In Russian)] https://doi.org/10.25694/URMJ.2018.11.16
11. Wu G., Van Der Helm F.C.T., Veeger H.E.J., Makhsous M., Van Roy P., Anglin C., Nagels J., Karduna A.R., McQuade K., Wang X., Werner F.W., Buchholz B. (ISB recommendation on definitions of joint coordinate systems of various joints for the reporting of human joint motion — Part II: Shoulder, elbow, wrist and hand. Journal of Biomechanics. 2005;38(5):981–992. https://doi.org/10.1016/j.jbiomech.2004.05.042
12. Harris G.F., Smith P.A. (editors). Human motion analysis: current applications and future directions. New York: IEEE Press; 1996;37. https://doi.org/10.1002/047134608X.W6606.pub2
13. Isard M., Blake A. Visual tracking by stochastic propagation of conditional density. In: Proceeding of the 4th European Conference on Computer Vision. New York. 1996:343–356.
14. Bregler C., Malik J. Tracking people with twists and exponential maps. Proceedings 1998 IEEE Computer Society Conference on Computer Vision and Pattern Recognition. 1998. https://doi.org/10.1109/CVPR.1998.698581
15. Ma Y., Soatto S., Košecká J., Sastry S. An invitation to 3D vision. Interdisciplinary Applied Mathematics. New York: Springer; 2004. https://www.springer.com/gp/book/9780387008936
16. Cappozzo A., Cappello A., Croce U.D., Pensalfini F. Surfacemarker cluster design criteria for 3-D bone movement reconstruction. IEEE transactions on bio-medical engineering. 1997;44(12):1165–1174. https://doi.org/10.1109/10.649988
17. Mündermann L., Corazza S., Andriacchi T. The evolution of methods for the capture of human movement leading to markerless motion capture for biomechanical applications. Journal of NeuroEngineering and Rehabilitation. 2006;3:6. https://doi.org/10.1186/1743-0003-3-6
18. Lanshammar H., Persson T., Medved V. Comparison between a marker-based and a marker-free method to estimate centre of rotation using video image analysis. In: Second World Congress of Biomechanics. Amsterdam; 1994.
19. Borzikov V.V., Rukina N.N., Vorob’eva O.V., Kuznetsov A.N., Belova A.N. Video analysis of movements of the person in the clinical practice. Sovremenniyi technologii v meditsine. 2015;7(4):201. (In Russian) https://doi.org/10.17691/stm2015.7.4.26
20. Moeslund T.B., Granum E. A survey of computer vision based human motion capture. Computer Vision and Image Understanding. 2001;81(3):231–268. https://doi.org/10.1006/cviu.2000.0897
21. Wang l., Hu W., Tan T. Recent developments in human motion analysis. Pattern Recognition. 2003;36(3):585–601. https://doi.org/10.1016/S0031-3203(02)00100-0
22. Skvorcov D.V. Technique to study the kinematics of movements and modern standards. Video analysis. Lechebnaja fizkul’tura i sportivnaja medicina. 2012;12:4–10. (In Russian)
23. Herda L., Fua P., Plänkers R., Boulic R., Thalmann D. Using skeleton-based tracking to increase the reliability of optical motion capture. Human Movement Science. 2001;20(3):313–341.
24. Royo Sánchez A.C., Aguilar Martín J.J., Santolaria Mazo J. Development of a new calibration procedure and its experimental validation applied to a human motion capture system. Journal of Biomechanical Engineering. 2014;136(12):124–502. http://dx.doi.org/10.1016/s0167-9457(01)00050-1
25. Lihachev S.A., Lukashevich V.A., Hromenkov A.V. Method of video analysis of walking as a way of objectifying lesions of the basal ganglia in Parkinson’s disease. Zhurnal nevrologii i psihiatrii im. S.S. Korsakova. 2011;111(12):44–47. (In Russian)
26. Lihachev S.A., Lukashevich V.A. Step motion video analysis: phenomenology of visual assessment. Mezhdunarodnyj nevrologicheskij zhurnal. 2012;2:178–182. (In Russian)
27. Gracheva E.V., Miljuhina I.V., Lebedev P.V., Cikunov S.G. Biomechanical markers of gait impairment progression in Parkinson's desease. Russian neurological journal. 2019;(4):16–22. (In Russian)
28. Levin O.S., Yunishchenko N.A. Gait and postural stability disorder in Parkinson’s disease: clinical and kinematic analysis. Modern technologies of diagnostics and rehabilitation in neurology and orthopedics, edited by D.V. Skvortsova. M.: Medika; 2005:130–137
29. Levin O.S., Yunishchenko N.A. Comparative analysis of gait disorders in patients with discirculatory encephalopathy and Parkinson’s disease. Theses of the participants of the International Congress «Restorative Medicine and Rehabilitation-2005». M.: 2005:83–84
30. Amosova N.A., Smolenceva I.G. Rehabilitation methods for Parkinson’s disease. Zhurnal nevrologii i psihiatrii im. S.S. Korsakova. Specvypuski. 2014;114(6):80–86. (In Russian)
Review
For citations:
Prokopenko S.V., Mozheiko E.Yu., Abroskina M.V., Ondar V.S., Ismailova S.B., Subocheva S.A., Khomchenkova A.A., Gurevich V.A., Zubritskaya E.M., Malkov A.B., Kondratyev S.N. Personalized rehabilitation assessment of locomotor functions in Parkinson disease using three-dimensional video analysis of motions. Russian neurological journal. 2021;26(1):23-33. (In Russ.) https://doi.org/10.30629/2658-7947-2021-26-1-23-33