Possible biomarkers of therapy effective
https://doi.org/10.30629/2658-7947-2021-26-1-4-14
Abstract
Administration of the disease modifying therapy in patients with multiple sclerosis is associated with alterations in immune system reactivity. Interferon’s IFN-β-1a and IFN-β-1b are included in the first-line treatment for multiple sclerosis cure. However, as protein substances, they are potentially immunogenic, hence neutralizing antibodies (Nab) can appear after 3–6 months in the serum of a multiple sclerosis patient, reducing IFN-molecules activity. Detection of the NAb to the administrated IFN-medication enables to change the patient management strategy. The level of inflammatory and apoptotic caspases in serum and cerebrospinal fluid may also be considered as a prognostic biomarker for the IFN-therapy efficiency. In addition, the level of microRNA, neurofilaments in serum and secreted glycoproteins (chitinases) in cerebrospinal fluid have certain prognostic value. Increasing of medical substances action specificity, searching for new pathogenesis links as targets for the therapeutic action and identification of the effective prognostic biomarkers are the main strategies of multiple sclerosis treatment nowadays.
About the Authors
T. P. OspelnikovaRussian Federation
105064, Moscow;
123098, Moscow
A. D. Shitova
Russian Federation
105064, Moscow;
119991, Moscow
References
1. Abate S.M., Ahmed Ali S., Mantfardo B., Basu B. Rate of Intensive Care Unit admission and outcomes among patients with coronavirus: A systematic review and Meta-analysis. PLoS One. 2020;15(7):e0235653. https://doi.org/10.1371/journal.pone.0235653
2. Ghayda R.A., Lee J., Lee J.Y., Kim D.K., Lee K.H., Hong S.H. et al. Correlations of Clinical and Laboratory Characteristics of COVID-19: A Systematic Review and Meta-Analysis. Int. J. Environ Res. Public Health. 2020;17(14):E5026. https://doi.org/10.3390/ijerph17145026
3. Potere N., Valeriani E., Candeloro M., Tana M., Porreca E., Abbate A. et al. Acute complications and mortality in hospitalized patients with coronavirus disease 2019: a systematic review and meta-analysis. Crit. Care. 2020;24(1):389. https://doi.org/10.1186/s13054-020-03022-1
4. Lazibat I., Rubinić Majdak M., Županić S. Multiple Sclerosis: new aspects of immunopathogenesis. Acta Clin. Croat. 2018;57:352–361. https://doi.org/10.20471/acc.2018.57.02.17
5. Dhib-Jalbut S., Marks S. Interferon-beta mechanisms of action in multiple sclerosis. Neurology. 2010;74:17–24. https://doi.org/10.1212/WNL.0b013e3181c97d99
6. Podbielska M., Banik N.L., Kurowska E., Hogan E.L. Myelin recovery in multiple sclerosis: the challenge of remyelination. Brain Sci. 2013;3(3):1282–1324. https://doi.org/10.3390/brainsci3031282
7. Chaudhuri A. Multiple sclerosis is primarily a neurodegenerative disease. J. Neural. Transm. (Vienna). 2013;120(10):1463–1466. https://doi.org/10.1007/s00702-013-1080-3
8. Goverman J., Woods A., Larson L., Weiner L.P., Hood L., Zaller D.M. Transgenic mice that express a myelin basic protein-specific T cell receptor develop spontaneous autoimmunity. Cell. 1993;72(4):551–60. https://doi.org/10.1016/0092-8674(93)90074-Z
9. Steelman A.J. Infection as an environmental trigger of multiple sclerosis disease exacerbation. Front. Immunol. 2015;6:520. https://doi.org/10.3389/fimmu.2015.00520
10. Cauwels A., Tavernier J. Tolerizing Strategies for the Treatment of Autoimmune Diseases: From ex vivo to in vivo Strategies. Front. Immunol. 2020;11:674. https://doi.org/10.3389/fimmu.2020.00674
11. Dhib-Jalbut S., Marks S. Interferon-beta mechanisms of action in multiple sclerosis. Neurology. 2010;74:17–24. https://doi.org/10.1212/WNL.0b013e3181c97d99
12. Kotov S.V., Lizhdvoj V.Yu., Astahov P.V., Sergeev S.A., Ospelnikova T.P. Impact of immunomodulatory therapy on cytokine production in multiple sclerosis. Almanah klinicheskoj mediciny. 2006;13:55–56. (In Russian) URL: https://cyberleninka.ru/article/n/vliyanie-immunomoduliruyuschey-terapii-na-produktsiyu-tsitokinovpri-rasseyannom-skleroze
13. Kotov S.V., Lizhdvoj V.Yu., Ospelnikova T.P. Immunomodulatory therapy in multiple sclerosis. Al’manah klinicheskoj mediciny. 2005;8(3):68–70. (In Russian) URL: https://cyberleninka.ru/article/n/immunomoduliruyuschaya-terapiya-pri-rasseyannomskleroze
14. Racke M.K., Lovett-Racke A.E., Karandikar N.J. The mechanism of action of glatiramer acetate treatment in multiple sclerosis. Neurology. 2010;74:25–30. https://doi.org/10.1007/s13317-018-0109-x
15. Ospelnikova T., Lizhdvoy V.Yo., Sidorova O.P., Kotov S.V., Yershov F.I. PO98 Therapeutic potential of IFN inducer in Multiple Sclerosis. Cytokine. 2012;59(3):550. https://doi.org/10.1016/j.cyto.2012.06.186
16. Gholamzad M., Ebtekar M., Ardestani M.S., Azimi M., Mahmodi Z., Mousavi M.J,. et al. A comprehensive review on the treatment approaches of multiple sclerosis: currently and in the future. Inflammation Research. 2019;68(1):25–38. https://doi.org/10.1007/s00011-018-1185-0
17. Ghafouri-Fard S., Mohammad Taheri M. A Comprehensive Review of Non-Coding RNAs Functions in Multiple Sclerosis. Eur. J. Pharmacol. 2020;879:173127. https://doi.org/10.1016/j.ejphar.2020.173127
18. Kulakova O.G., Baulina N.M., Popova E.V., Bojko A.N., Favorova O.O. Participation of miRNA in multiple sclerosis.. Zhurnal nevrologii i psihiatrii im. S.S. Korsakova. 2018;8:147. (In Russian) https://doi.org/10.17116/jnevro2018118082128
19. Kremer D., Küry P., Dutta R. Promoting remyelination in multiple sclerosis: current drugs and future prospects. Mult. Scler. 2015;21(5):541–549. https://doi.org/10.1177/1352458514566419
20. Foale S., Berry M., Logan A., Fulton D., Ahmed Z. LINGO-1 and AMIGO3, potential therapeutic targets for neurological and dysmyelinating disorders? Neural Regen Res. 2017;12(8):1247. https://doi.org/10.4103/1673-5374.213538
21. Pawlitzki M., Zettl U.K., Ruck T., Rolfes L., Hartung H.P., Meuth S.G. Merits and culprits of immunotherapies for neurological diseases in times of COVID-19. EBioMedicine. 2020;56:102822. https://doi.org/10.1016/j.ebiom.2020.102822
22. Berger J.R., Brandstadter R., Bar-Or A. COVID-19 and MS disease-modifying therapies. Neurol Neuroimmunol Neuroinflamm. 2020;7(4):e761. https://doi.org/10.1212/NXI.0000000000000761
23. Barzegar M., Mirmosayyeb O., Ghajarzadeh M., Nehzat N., Vaheb S., Shaygannejad V., Vosoughi R. Characteristics of COVID-19 disease in multiple sclerosis patients. Mult Scler Relat Disord. 2020;45:102276. https://doi.org/10.1016/j.msard.2020.102276
24. Harris V.K., Tuddenham J.F., Sadiq S.A. Biomarkers of multiple sclerosis: current findings. Degener. Neurol Neuromuscul Dis. 2017;7:19–29. https://doi.org/10.2147/DNND.S98936
25. Shmidt T.E., Yahno N.N. Rasseyannyj skleroz: rukovodstvo dlya vrachej. 2-e izd. M.: «MEDpress-inform»; 2010:272. (In Russian)
26. Sorensen P.S. Neutralizing antibodies against interferon-Beta. Ther. Adv. Neurol. Disord. 2008;1(2):125–41. https://doi.org/10.1177/1756285608095144
27. Оspelnikovа T.P., Моrоzоvа O.V., Isaevа E.I., Lizhdvoy V.Yu., Коtоv S.V., Еrshov F.I. Innate and Adaptive Immunity during Long-term Treatment of Multiple Sclerosis with Interferon Beta 1a. Journal of General and Emergency Medicine. 2017;2(2):014. . www.scientonline.orgwww.scientonline.org J Gen Emerg Med. Research Article
28. Noronha A. Neutralizing antibodies to interferon. Neurology. 2007;68(24 Suppl 4):16–22. https://doi.org/10.1212/01.wnl.0000277705.63813.84
29. Bursagova BI, Pak LA, Studenikin VM, Kuzenkova LM. The problem of neutralizing antibodies in management of multiple sclerosis. Pediatricheskaya farmakologiya. 2011;8(5):61–64 (In Russian) URL: https://cyberleninka.ru/article/n/problema-neytralizuyuschih-antitel-v-terapii-rasseyannogo-skleroza
30. Bertolotto A., Capobianco M., Amato M.P., Capello E., Capra R., Centonze D. et al. Italian Multiple Sclerosis Study group. Guidelines on the clinical use for the detection of neutralizing antibodies (NAbs. to IFN beta in multiple sclerosis therapy: report from the Italian Multiple Sclerosis Study group. Neurol. Sci. 2014;35(2) 307–16. https://doi.org/10.1007/s10072-013-1616-1
31. Lizhdvoy V.Yo., Ospelnikova T.P., Kotov S.V. The influence of neutralizing antibodies to interferonbeta on progression of multiple sclerosis. Al’manah klinicheskoj mediciny. 2016;44(3):318–323 (In Russian) URL: https://cyberleninka.ru/article/n/vliyanie-neytralizuyuschih-antitel-kinterferonu-beta-na-progressirovanie-rasseyannogo-skleroza
32. Ospelnikova T.P., Lizhdvoy V.Yo. Neutralasing antibodies as efficiency markers of multiple sclerosis therapy with beta-interferon medications. Zhurnal nevrologii i psihiatrii im. S.S. Korsakova. 2018;118(8, вып.2):153–154. (In Russian)
33. Hesse D., Sørensen P.S. Using measurements of neutralizing antibodies: the challenge of IFN-beta therapy. Eur. J. Neurol. 2007;14(8):850–9. https://doi.org/10.1111/j.1468-1331.2007.01769.x
34. Hesse D., Sellebjerg F., Sorensen P.S. Absence of MxA induction by interferon beta in patients with MS reflects complete loss of bioactivity. Neurology. 2009;73(5):372–7. https://doi.org/10.1212/WNL.0b013e3181b04c98
35. Farrell R.A., Espasandin M., Lakdawala N., Creeke P.I., Worthington V., Giovannoni G. Incorporation of an interferon-β neutralizing antibody assay into routine clinical practice. Mult. Scler. 2011;17(11):1333–40. https://doi.org/10.1177/1352458511412654
36. Massart C, Gibassier J, Oger J, Le Page E, Edan G. Neutralizing antibodies to interferon beta in multiple sclerosis: analytical evaluation for validation of a cytopathic effect assay. Clin. Chim. Acta. 2007;377(1–2):185–191. https://doi.org/10.1016/j.cca.2006.09.021
37. Ospelnikova T.P., Kolodyazhnaya L.V., Tabakov V.Yu., Ershov F.I. Patent na izobretenie RF № 2626832 ot 02.03.2016, opublikovan: 02.08.2017. Sposob opredeleniya nejtralizuyushchih antitel v syvorotke krovi bol’nyh rasseyannym sklerozom, lechennyh preparatami interferona-beta (In Russian)
38. Lallemand C., Meritet J.F., Erickson R., Grossberg S.E., Roullet E., Lyon-Caen O., Lebon P., Tovey M.G. Quantification of neutralizing antibodies to human type I interferons using division-arrested frozen cells carrying an interferon-regulated reporter-gene. J. Interferon Cytokine Res. 2008;28(6):393–404. https://doi.org/10.1089/jir.2007.0142
39. Baranzini S.E., Mousavi P., Rio J., Caillier S.J., Stillman A., Villoslada P., Wyatt M.M., Comabella M., Greller L.D., Somogyi R., Montalban X., Oksenberg J.R. Transcription-based prediction of response to IFNbeta using supervised computational methods. PLoS Biol. 2005;3(1):e2. https://doi.org/10.1371/journal.pbio.0030002
40. Ning X., Wang Y., Jing M., Sha M., Lv M., Gao P., Zhang R., Huang X., Feng J.M., Jiang Z. Apoptotic Caspases Suppress Type I Interferon Production via the Cleavage of cGAS, MAVS, and IRF3. Mol. Cell. 2019;74(1):19–31.e7. https://doi.org/10.1016/j.molcel.2019.02.013
41. Chawla-Sarkar M., Lindner D.J., Liu Y.F., Williams B.R., Sen G.C., Silverman R.H., Borden E.C. Apoptosis and interferons: role of interferon-stimulated genes as mediators of apoptosis. Apoptosis. 2003;8(3):237–49. https://doi.org/10.1023/a:1023668705040
42. Keane R.W., Dietrich W.D., de Rivero Vaccari J.P. Inflammasome Proteins As Biomarkers of Multiple Sclerosis. Front. Neurol. 2018; 9:135. https://doi.org/10.3389/fneur.2018.00135
43. Kadowaki A., Quintana F.J. The NLRP3 inflammasome in progressive multiple sclerosis. Brain. 2020;143(5):1286–1288. https://doi.org/10.1093/brain/awaa135
44. Deerhake M.E., Biswas D.D., Barclay W.E., Shinohara M.L. Pattern Recognition Receptors in Multiple Sclerosis and Its Animal Models. Front. Immunol. 2019; 0:2644. https://doi.org/10.3389/fimmu.2019.02644
45. Inoue M., Williams K.L., Oliver T., Vandenabeele P., Rajan J.V., Miao E.A., Shinohara M.L. Interferon-β therapy against EAE is effective only when development of the disease depends on the NLRP3 inflammasome. Sci. Signal. 2012;5(225):ra38. https://doi.org/10.1126/scisignal.2002767
Review
For citations:
Ospelnikova T.P., Shitova A.D. Possible biomarkers of therapy effective. Russian neurological journal. 2021;26(1):4-14. (In Russ.) https://doi.org/10.30629/2658-7947-2021-26-1-4-14