Preview

Russian neurological journal

Advanced search

The Structure of SleepDisordered Breathing and Cognitive Impairment in Cerebrovascular Diseases

https://doi.org/10.30629/2658-7947-2020-25-3-26-33

Abstract

Abstract. Obstructive sleep apnea syndrome (OSAS) is considered one of the risk factors for cognitive impairment (CogI). The role of central apnea (CA) in the development of CI has not been established. Aim — to study the features of the structure of sleep-disordered breathing (SDB) in patients with chronic cerebrovascular disease (CVD) and clarify their significance as a risk factor for CogI. Material and methods. 100 patients (50 men, 50 women) at the age of 65 (58; 74.5) years were examined. Most had arterial hypertension (AH) and atherosclerosis of the brachiocephalic arteries; less commonly, stable forms of coronary artery disease and diabetes mellitus (DM) type 2. All patients were diagnosed with stage I–II dyscirculatory encephalopathy. Previously, non-disabling stroke was suffered by 37% of patients (mRS 0–2 points). Everyone completed the MoCA test. SDB was verified during cardiorespiratory monitoring (CT-04-3R (M), “INKART”, St. Petersburg). We estimated the number of episodes of SDB, obstructive apnea, CA, apnea/hypopnea index (AHI), duration and degree of desaturation. The correlation, discriminant and ROC analysis, the calculation of the odds ratio (OR) and the confidence interval (CI) of the occurrence of the event are performed. Results. SDB (AHI ≥ 5) according to the type of OSAS and CA were detected in 82% of patients. The average AHI was 13 (8; 21). CogI (MoCA < 26) were detected in 28% of patients without SDB and 52% of patients with SDB (p = 0.03). The relationship between the assessment of MoCA and AHI (Spearman, r = –0.24, p = 0.02) was established. A discriminant analysis with step-by-step inclusion of cardiovascular risk factors and SDB parameters revealed that CA, the degree of AH, age and DM are associated with the development of CN (Wilks’s Lambda: 0.75542; approx. F(4,73) = 5.9087, p < 0.0004). A threshold value of CA ≥ 5 was established (AUC 0.741, 95% CI 0.595–0.828; sensitivity 64%, specificity 76%), while the OR is 5.5 (95% CI 2.09–14.90). Conclusion. In 82% of patients with chronic CVD, SDB is detected, which is associated with a twofold increase in the frequency of CogI. Moreover, the most significant is the presence in the SDB structure of 5 or more episodes of CA, which serve not as a cause of CogI, but as a marker of more severe structural and functional cerebral changes.

About the Authors

L. A. Geraskina
Research Center of Neurology
Russian Federation
Moscow


G. G. Sharipov
Medical Institute of RUDN University (Peoples´ Friendship University of Russia)
Russian Federation
Moscow


A. V. Fonyakin
Research Center of Neurology
Russian Federation
Moscow


M. Yu. Maksimova
Research Center of Neurology
Russian Federation
Moscow


References

1. Яхно НН, Захаров ВВ, Локшина АБ и др. Деменции. Москва: Медпресс-информ. 2011. [Yakhno NN, Zakharov VV, Lokshina AB et al. Dementii. Moscow: Medpress-inform. 2011. (In Russian)].

2. Яхно НН. Когнитивные нарушения в неврологической практике. Неврологический журнал. 2006;11(1):4–12. [Yakhno NN. Cognitive impairment in neurological practice. Nevrologicheskii Zhurnal. 2006;11(1):4–12. (In Russian)].

3. American Psychiatric Association. Diagnostic and Statistical Manual of Mental Disorders. Fifth Edition (DSM-5). Arlington: American Psychiatric Publishing. 2013:992.

4. Парфенов ВА. Сосудистые когнитивные нарушения и хроническая ишемия головного мозга (дисциркуляторная энцефалопатия). Неврология, нейропсихиатрия, психосоматика. 2019;11(3):61–67. [Parfenov V.A. Vascular cognitive impairment and chronic cerebral ischemia (dyscirculatory encephalopathy). Neurology, Neuropsychiatry, Psychosomatics. 2019;11(3):61–67. (In Russian)]. Doi: 10.14412/2074-2711-2019-3S-61-67.

5. Суслина ЗА, Варакин ЮЯ. Клиническое руководство по ранней диагностике, лечению и профилактике сосудистых заболеваний головного мозга. М. 2015:440. [Suslina ZA, Varakin UA. Clinical guidelines for early diagnosis, treatment and prevention of vascular diseases of the brain. М. 2015:440. (In Russian)].

6. Bucks RL, Olaithe M, Rosenzweig I, Morreli MJ. Reviewing the relationship between OSA and cognition: where do we go from here? Respirology. 2017;22(7):1253–1261. DOI: 10.1111/resp.13140. PMID: 28779504.

7. Daurat A, Huet N, Tiberge M. Metamemory beliefs and episodic memory in obstructive sleep apnea syndrome. Psychol. Rep. 2010;107(1):289–302. DOI:10.2466/10.13.20.22.PR0.107.4.289-302. PMID: 20923074.

8. Leng Y, McEvoy CT, Allen IE et al. Association of sleepdisorder breathing with cognitive function and risk of cognitive impairment: A systematic review and meta-analysis. JAMA Neurol. 2017;74(10):1237–1245. DOI: 10.1001/jamaneurol.2017.2180. PMID: 28846764.

9. Kielb SA, Ancoli-Israel S, Rebok GW et al. Cognition in obstructive sleep apnea-hypopnea syndrome (OSAS): Current clinical knowledge and the impact of treatment. NeuroMolecular Medicine. 2012;14(3):180–193. DOI: 10.1007/S12017-012-8182-1. PMID: 22569877. PCMID: PMC3823054.

10. Rosenzweig I, Williams SC, Morrell MJ. The impact of sleep and hypoxia on the brain: potential mechanisms for the effects of obstructive sleep apnea. Current Opinion in Pulmonary Medicine. 2014;20(6):565–571. DOI: 10.1097/MCP.0000000000000099. PMID: 25188719.

11. Rosenzweig I, Glasser M, Polsek D et al. Sleep apnea and the brain: a complex relationship. The Lancet Respiratory Medicine. 2015;3(5):404–414. DOI: 10.1016/S2213-2600(15)00090-9. PMID: 25887982.

12. Orr JE, Malhotra A, Sands SA. Pathogenesis of central and complex sleep apnea. Respirology. 2017;22(1):43–52. DOI: 10.1111/resp.12927. PMID: 27707160.

13. Drager LF, McEvoy RD, Barbe F et al. Sleep apnea and cardiovascular disease: lessons from recent trials and need for team science. Circulation. 2017;136(19):1840–1850. DOI:10.1161/CIRCULATIONAHA.117.029400. PMID: 29109195.

14. Munoz R, Duran-Cantolla J, Martinez-Vila E et al. Central sleep apnea is associated with increased risk of ischemic stroke in the elderly. Acta. Neurol. Scand. 2012;126(3):183–1888. DOI: 10.1111/j.1600-0404.2011.01625.x. PMID: 22150745.

15. Nasreddine ZS, Phillips NA, Bedirian V et al. The Montreal Cognitive Assessment, MoCA: a brief screening tool for mild cognitive impairment. J. Am. Geriatr. Soc. 2005;53(4):695–699. DOI: 10.1111/j.1532-5415.2005.53221.x. PMID: 15817019.

16. Berry RB, Budhiraja R, Gottlieb DJ et al. Rules for scoring respiratory events in sleep: update of the 2007 AASM Manual for the Scoring of Sleep and Associated Events. Deliberations of the Sleep Apnea Definitions Task Force of the American Academy of Sleep Medicine. J. Clin. Sleep Med. 2012;8(5):597–619. DOI: 10.5664/jcsm.2172. PMID: 23066376.

17. Jennum P, Riha RL. Epidemiology of sleep apnoea/hypopnoea syndrome and sleep-disordered breathing. Eur. Respir. J. 2009;33(4):907–914. DOI: 10.1183/09031936.00180108. PMID: 19336593.

18. Wu Z, Chen F, Yu F, Guo Z. A meta-analysis of obstructive sleep apnea in patients with cerebrovascular disease. Sleep Breath. 2018;22(3):729–742. DOI: 10.1007/s11325-017-1604-4. PMID: 29248975.

19. Dong R, Dong Z, Liu H et al. Prevalence, risk factors, outcomes, and treatment of obstructive sleep apnea in patients with cerebrovascular disease: A systematic review. J. Stroke Cerebrovasc. Dis. 2018;27(6):1471–1480. DOI:10.1016/j.jstrok ecerebrovasdis.2017.12.048. PMID: 29555400.

20. Davis AP, Billings ME, Longstreth WT, Jr., Khot SP. Early diagnosis and treatment of obstructive sleep apnea after stroke: Are we neglecting a modifiable stroke risk factor? Neurol. Clin. Pract. 2013;3(3):192–201. DOI: 10.1212/CPJ.0b013e318296f274. PMID: 23914326/ PMCID: PMC3721244.

21. Лутохин ГМ, Гераскина ЛА, Фонякин АВ, Максимова МЮ. Оптимизация ранней реабилитации больных с ишемическим инсультом и нарушением дыхания во сне. Анналы клинической и экспериментальной неврологии. 2017;2:5–13. [Lutohin GM, Geraskina LA, Fonakin AV, Maksimova MU. Optimization of early rehabilitation of patients with ischemic stroke and sleep breathing disorders. Annals of clinical and experimental neurology. 2017;2:5–13. (In Russian)]. DOI: 10.18454/ACEN.2017.2.1.

22. Van der Flier WM, Skoog I, Schneider JA et al. Vascular cognitive impairment. Nat. Rev. Dis. Primers. 2018;4:18003. DOI: 10.1038/nrdp.2018.3. PMID: 29446769.

23. Yaneva-Sirakova T, Traykov L, Petrova J et al. Screening for mild cognitive impairment in patients with cardiovascular risk factors. Neuropsychiatr. Dis. Treat. 2017;13:2925–2934. DOI: 10.2147/NDT.S144264. PMID: 29255360.

24. Siebert JS, Wahl HW, Degen C et al. Attitude toward own aging as a risk factor for cognitive disorder in old age: 12-year evidence from the ILSE study. Psychol. Aging. 2018;33(3):461–472. DOI: 10.1037/pag0000252. PMID: 29756803.

25. Alkan A, Sharifov R, Akkoyunlu ME et al. MR spectroscopy features of brain in patientes with mild and severe obstructive sleep apnea syndrome. Clin. Imaging. 2013;37(6):989–992. DOI: 10.1016/j.clinimag.2013.07/010. PMID: 23993754.

26. Xia Y, Fu Y, Xu H et al. Changes in cerebral metabolites in obstructive sleep apnea: a systemic review and meta-analysis. Sci. Rep. 2016;6:23712. DOI: 10.1038/srep28712. PMID: 27349417.

27. Yaouhi K, Bertran F, Clochon P et al. A combined neuropsychological and brain imaging study of obstructive sleep apnea. J. Sleep. Res. 2009;18(1):36–48. DOI: 10.1111/j.1365-2869.2008.00705.x. PMID: 19250174.

28. Lim DC, Pack AI. Obstructive sleep apnea and cognitive impairment: addressing the blood-brain barrier. Sleep Med. Rev. 2014;18(1):35–48. DOI: 10.1016/j.smrv.2012.12.003. PMID: 23541562. PCMID: PMC3758447.

29. Morisson F, Décary A, Petit D et al. Daytime sleepiness and EEG spectral analysis in apneic patients before and after treatment with continuous positive airway pressure. Chest. 2001;119(1):45–52. DOI: 10.1378/chest.119.1.45. PMID: 11157583.

30. Bucks RS, Olaithe M, Eastwood P. Neurocognitive function in obstructive sleep apnea: a meta-review. Respirology. 2013;18(1):61–70. DOI: 10.1111/j.1440-1843.2012.02255.x. PMID: 22913604.

31. Xue M, Xu W, Ou YN et al. Diabetes mellitus and risk of cognitive impairment and dementia: A systematic review and meta-analysis of 144 prospective studies. Ageing Res. Rev. 2019;55:100944. DOI: 10.106/j.arr.2019.100944. PMID 31430566.

32. Terpening Z, Lewis SJ, Yee BJ et al. Association between sleepdisordered breathing and neuropsychological performance in older adults with mild cognitive impairment. J. Alzheimers. Dis. 2015;46(1):157–165. DOI: 10.3233/JAD-141860. PMID: 25720400.

33. Li N, Wang J, Wang D et al. Correlation of sleep microstructure with daytime sleepiness and cognitive function in young and middle-aged adults with obstructive sleep apnea syndrome. Eur. Arch. Otorhinolaryngol. 2019;276(12):3525–3532. DOI: 10.1007/s00405-019-05529-y. PMID: 31263979.

34. Nopmaneejumruslers C, Kaneko Y, Hajek V et al. Cheynestokes respiration in stroke: Relationship to hypocapnia and occult cardiac dysfunction. American Journal of Respiratory and Critical Care Medicine. 2005;171(9):1048–1052. DOI: 10,1164/rccm.200411-1591OC. PMID: 15665317.

35. Duning T, Deppe M, Brand E et al. Brainstem involvement as a cause of central sleep apnea: pattern of microstructural cerebral damage in patients with cerebral microangiopathy. PLoS One. 2013;8(4):60304. DOI: 10.1371/journal.pone.0060304. PMID: 23637744. PMCID: PMC3634049.

36. Heidbreder A, Spiebhofer J, Stypmann J et al. Microstructural cerebral lesions are associated with the severity of central sleep apnea with Cheyne-Stokes-respiration in heart failure and are modified by PAP-therapy. Respir. Physiol. Neyrobiol. 2018;247:81–187. DOI: 10.1016/j.resp.2017.10.010. PMID: 29102807.


Review

For citations:


Geraskina L.A., Sharipov G.G., Fonyakin A.V., Maksimova M.Yu. The Structure of SleepDisordered Breathing and Cognitive Impairment in Cerebrovascular Diseases. Russian neurological journal. 2020;25(3):26-33. (In Russ.) https://doi.org/10.30629/2658-7947-2020-25-3-26-33

Views: 888


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2658-7947 (Print)
ISSN 2686-7192 (Online)