Preview

Russian neurological journal

Advanced search

Hereditary Neuromuscular Diseases. Part 3. Muscular Dystrophies: Pathogenesis, Diagnosis and Attempts of Trial Treatments

https://doi.org/10.30629/2658-7947-2020-25-2-5-11

Abstract

Membrane theory of muscle weakness in hereditary muscular dystrophy was described with accent of predominated Ca2+ ions in skeletal muscle due to destruction of the sarcolemma and other membranes of the different organelles of the skeletal muscle. Showed the role of CT, MRI and phosphorus NMR-spectroscopy as well as the noninvasive the analysis cell-free fetus DNA in maternal plasma for prenatal diagnostic of muscular dystrophies. The different a trial attempts of treatment of muscular dystrophy was described.

About the Authors

V. M. Kazakov
Department of Neurology First Pavlov State Medical University; State Medical University, Russia Department of Neuromuscular Diseases, City Hospital 2
Russian Federation
St. Petersburg


A. A. Skoromets
Department of Neurology First Pavlov State Medical University
Russian Federation
St. Petersburg


D. I. Rudenko
Department of Neurology First Pavlov State Medical University; State Medical University, Russia Department of Neuromuscular Diseases, City Hospital 2
Russian Federation
St. Petersburg


T. R. Stuchevskaya
Department of Neurology First Pavlov State Medical University; State Medical University, Russia Department of Neuromuscular Diseases, City Hospital 2
Russian Federation
St. Petersburg


V. O. Kolynin
Department of Neurology First Pavlov State Medical University; State Medical University, Russia Department of Neuromuscular Diseases, City Hospital 2
Russian Federation
St. Petersburg


References

1. Duboc D., Jehenson P., Tran Dinh S., et al. Phosphorus NMR spectroscopy study of muscular enzyme deficiency involving glycogenosis and glycolysis. Neurology. 1987;37:663–671.

2. Kazakov V.M., Rudenko D.I., Skoromets A.A. Facioscapulo-humeral muscular dystrophy and her connection with facio-scapulo-peroneal muscular dystrophy. History, clinical, genetics and differential diagnosis. Sunct-Petersburg: Polytechnica. 2008;374. (In Russian).

3. Kazakov V., Kolynin V., Rudenko D., Pozdnyakov A. MRI of lower limb muscles in patients with 4q35-linked FSLD2. Oxford Symposium on Muscle Disease. Oxford, UK. 2007;5.

4. Kolynin V.O. Magnit-resonance tomographic (MRT) of skeletal muscles in patients with autosomal dominant facio-scapulo-humeral muscular dystrophy linked with chromosome 4q35. Thesis, SPb. 2007;174. (In Russian).

5. Bakker E., van Ommen G.J.B. Duchenne and Becker muscular dystrophy (DMD and BMD) In: Neuromuscular Disorders: Clinical and molecular genetics. (Ed. A.E.H. Emery), Chichester: Wiley. 1998;59–85.

6. Upadhyaya M., MacDonald M., Ravine D. Noninvasive prenatal diagnosis for facioscapulohumeral muscular dystrophy (FSHD). Prenat. Diagn. 1999;19(10):959–965.

7. Imran Rafi, Lyn Chitty. Noninvasive the analysis cell-free fetus DNA in maternal plasma and non-invasive prenatal diagnosis. Br. J. Gen. Pract. 2009;59 (562):146–148.

8. Sacconi S., Trevisson E., Salviati L. et al. Coenzyme Q10 is frequently reduced in muscle in patients with mitochondrial myopathy. Neuromuscul. Disord. 2010;20(1):44–48.

9. Buyse G.M., Goemans M., van den Nauwe et al. Idebenon as a novel therapeutic approach for Duchenne muscular dystrophy. Results from a 12 months, double-blind, randomized placebocontrolled trial. Neuromusul. Disord. 2011;21 (6):396–405.

10. Griggs R.C., Herr B.E, Eagle M. et al. Equipoise concerning corticosteroid use in boys with Duchenne muscular dystrophy: persistent wide variation in practice. (Abstract). Neuromuscul. Disord. 2008;18(9–10):824.

11. Angelini C., Peterle E. Old and new therapeutic developments in steroid treatment in Duchenne muscular dystrophy. Acta Myol. 2012;31:9–20.

12. Wong-Kisiel L.C., Kuntz N.L. Two siblings with limb-girdle dystrophy type 2E responsive to deflazacort. Neuromuscul. Disord. 2010;20(2):122–124.

13. Hoffman E.P, Riddlec V., Maxime A. et al. Phase 1 trial of vamorolone, a first-in-class steroid, shows improvements in side effects via biomarkers bridged to clinical outcomes. Steroid. 2018;134:43–52.

14. Munzur A.Y. Glucocorticoid corticosteroid for Duchenne muscular dystrophy. Cochrane Detabase Syst. Rev. 2008;23(1):3725.

15. Suri, Valdia. Glucocorticoid regulation of brain-derived neurotrophic factor: Relevance to hippocampal structural and functional plasticity. Neuroscience. 2013;239:196–213.

16. Merlini L., Angellini A., Tiepolo T. et al. Cyclosporine A corrects mitochondrial dysfunction and muscle apoptosis in patients with collagen VI myopathies. Proc. Nat. Sci. 2008;105;(9–10):52255229.

17. Merlini L., Bernardi P. Therapy of collagen VI-related myopathy (Bethlem and Ulrich). Neurotherapeutics. 2008;5:613–618.

18. Politano L., Nigro G., Nigro V. et al. Gentamicin administration in Duchenne patients with premature stop codon. Preliminary results. Acta Myol. 2003;XXII(1):11–14.

19. van der Kooi E.L., Vogels O.J., van Asseldonk R.J. et al. Strength training and albuterol in facioscapulohomeral muscular dystrophy. Neurology. 2004;24:702–708.

20. Harcourt L.J., Schertzer J.D., Ryall J.G, Lynch G.S. Lower dose formoterol administration improves muscle function in dystrophic mdx mice without increasing fatigue. Neuromuscul Disord. 2007;17:47–55.

21. Patel K., Macharia R, Amthor H. Molecular mechanisms involving IGF-1 and myostatin to induce muscle hypertrophy as a therapeutic strategy for Duchenne muscular dystrophy. Acta Myol. 2005;XXIV(3):230–241.

22. Scheuerbrandt G. Fourth round table conference in Monaco on 15 January 2005: Regulation of muscle growth, a therapeutic issue for Duchenne muscular dystrophy. Acta Myol. 2005;XXIV (1):25–35.

23. Tsuchida K. Myostatin inhibition by a follistatin-derived peptide ameliorates the pathophysiology of MD model mice. Acta Myol. 2008;XXVII:14–18.

24. Ohsawa Y., Okada T., Kuga A. et al. Caveolin-3 regulates myostatin signaling — Mini-review. Acta Myol. 2008;XXVII:19–24.

25. Morgan J.E. Stem cells to treat muscular dystrophies. Acta Myol. 2005;XXIV(3):181–183.

26. Mouli V., Aamiri A, Perie S et al. Myoblast transfer therapy. Is there any light at the end of the tunnel? Acta Myol. 2005;XXIV(2):128–133.

27. Vilqin J.T. Myoblast transplantation: clinical trials and perspectives. Mini-review. Acta Myol. 2005;XXIV(2):119–127.

28. Morosetti R., Girardo T., Broccoloni A. et al. Mesoangioblasts from FSHMD display in vivo a variable myogenic ability predictable by their in vitro behavior. Cell Transplant. 2010;20(8):1299–313.

29. Bertoni C. Oligonucleotide-mediated gene editing for neuromuscular disorders. Acta Myol. 2005;XXIV:194–201.

30. Scheuerbrandt G. Exon Skipping with U7 gene transfer. Acta Myol. 2006;XXV:40–42.

31. Yokoto T., Duddy W., Partridge T. Optimizing exon skipping therapies for DMD. Acta Myol. 2007;XXVI(3):179–84.

32. Muntoni F. The development of antisense oligonucleotide therapies for Duchenne muscular dystrophy. Neuromuscul. Disord. 2010;20(5):355–362.


Review

For citations:


Kazakov V.M., Skoromets A.A., Rudenko D.I., Stuchevskaya T.R., Kolynin V.O. Hereditary Neuromuscular Diseases. Part 3. Muscular Dystrophies: Pathogenesis, Diagnosis and Attempts of Trial Treatments. Russian neurological journal. 2020;25(2):5-11. (In Russ.) https://doi.org/10.30629/2658-7947-2020-25-2-5-11

Views: 776


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2658-7947 (Print)
ISSN 2686-7192 (Online)