Preview

Russian neurological journal

Advanced search
Open Access Open Access  Restricted Access Subscription Access

Impaired spatial orientation and navigation as an early sign of Alzheimer’s disease: diagnosis using virtual reality technologies

https://doi.org/10.30629/2658-7947-2024-29-6-4-14

Abstract

In Alzheimer’s disease (AD), disturbances in spatial orientation and navigation occur even at the pre-dementia stage and can have important diagnostic significance, reflecting changes in those areas of the brain that suffer earlier than others in this pathology. However, it is difficult to identify such disorders using classical neuropsychological tests, and studies in the real environment are not readily available in routine practice. These difficulties can be overcome by researches in a virtual environment.
The purpose was to summarize scientific data on the use of virtual reality computer technologies for early diagnosis. The article provides an overview of 16 papers published over the past 15 years on the use of virtual reality technologies for the assessment of visuospatial orientation and navigation in mild cognitive impairment (MCI) and mild dementia AD patients. 13 studies revealed deficit in spatial orientation and navigation already at the stage of MCI. The deterioration in in spatial orientation and navigation was more pronounced in patients with AD. The most sensitive tests for the diagnosis of orientation and navigation impairments were those that required switching between egocentric and allocentric spatial representations. Assessment of orientation in a virtual environment, carried out simultaneously with neurophysiological and neuroimaging studies of the brain, made it possible to expand the understanding of the morpho-functional basis of visuospatial disorders in humans. Early detection of deficit in spatial orientation and navigation using virtual reality technologies in Alzheimer’s disease requires the development of standardized tests aimed at assessing the various components of these disorders and their individual combinations in patients with brain damage.

About the Authors

V. N. Grigoryeva
Privolzhsky Research Medical University
Russian Federation

Nizhny Novgorod



M. A. Semaka
Privolzhsky Research Medical University
Russian Federation

Nizhny Novgorod



References

1. Levin O.S., Vasenina E.E. Twenty-five years of the amyloid hypothesis of alzheimer disease: advances, failures and new perspectives. S.S. Korsakov Journal of Neurology and Psychiatry (Zhurnal nevrologii i psihiatrii im. S.S. Korsakova). 2016;116(6 2):3 9 (Russian). DOI: 10.17116/jnevro2016116623-9

2. Yakhno N.N., Koberskaya N.N., Perepelov V.A., Smirnov D.S., Solodovnikov V.I., Trufanov M.I., Gridin V.N. Hippocampal magnetic resonance imaging morphometry and neuropsychological parameters in patients with Alzheimer’s disease. Neurology, Neuropsychiatry, Psychosomatics (Nevrologiya, neiropsikhiatriya, psikhosomatika). 2019;11(4):28–32 (Russian). DOI: 10.14412/2074-2711-2019-4-28-32

3. Zakharov V.V. Modern approaches to early diagnosis of Alzheimer’s disease. Behavioral Neurology (Povedencheskaja nevrologija). 2023;2:16–23 (Russian). DOI: 10.46393/27129675_2023_2_16

4. Lokshina A.B., Zakharov V.V., Vakhnina N.V. Modern aspects of diagnosis and treatment of cognitive impairments (literature review). Neurology, Neuropsychiatry, Psychosomatics (Nevrologiya, neiropsikhiatriya, psikhosomatika). 2023;15(1):83–89 (Russian). DOI: 10.14412/2074-2711-2023-1-83-89

5. Weniger G, Ruhleder M, Lange C, Wolf S, Irle E. Egocentric and allocentric memory as assessed by virtual reality in individuals with amnestic mild cognitive impairment. Neuropsychologia. 2011 Feb;49(3):518–27. DOI: 10.1016/j.neuropsychologia.2010.12.031

6. Cogné M, Taillade M, N’Kaoua B, Tarruella A, Klinger E, Larrue F, Sauzéon H, Joseph PA, Sorita E. The contribution of virtual reality to the diagnosis of spatial navigation disorders and to the study of the role of navigational aids: A systematic literature review. Ann Phys Rehabil Med. 2017 Jun;60(3):164–176. DOI: 10.1016/j.rehab.2015.12.004

7. Coughlan G, Laczó J, Hort J, Minihane AM, Hornberger M. Spatial navigation deficits — overlooked cognitive marker for preclinical Alzheimer disease? Nat Rev Neurol. 2018 Aug;14(8):496–506.

8. Plácido J, de Almeida CAB, Ferreira JV, de Oliveira Silva F, Monteiro-Junior RS, Tangen GG, Laks J, Deslandes AC. Spatial navigation in older adults with mild cognitive impairment and dementia: A systematic review and meta-analysis. Exp Gerontol. 2022 Aug;165:111852. DOI: 10.1016/j.exger.2022.111852

9. Huang Y, Xu J, Zhang X, Liu Y, Yu E. Research progress on vestibular dysfunction and visual-spatial cognition in patients with Alzheimer’s disease. Front Aging Neurosci. 2023 Apr 20;15:1153918. DOI: 10.3389/fnagi.2023.1153918

10. Iachini T., Ruotolo F., Iavarone A., Mazzi M. C., Ruggiero G. . From amci to ad: the role of visuo-spatial memory span and executive functions in egocentric and allocentric spatial impairments. Brain Sci. (2021)11:1536. DOI: 10.3390/brainsci11111536

11. Thornberry C, Cimadevilla JM, Commins S.Virtual Morris water maze: opportunities and challenges.Rev Neurosci. 2021 Apr 12;32(8):887–903. DOI: 10.1515/revneuro-2020-0149

12. Geva D, Henik A. Perspective taking in judgment of relative direction tasks. Mem Cognit. 2019 Aug;47(6):1215–1230. DOI: 10.3758/s13421-019-00929-1

13. Zhong JY, Goh SK, Woo CJ, Alam S. Impact of Spatial Orientation Ability on Air Traffic Conflict Detection in a Simulated Free Route Airspace Environment. Front. Hum. Neurosci. 2022; 16:739866. DOI: 10.3389/fnhum.2022.739866

14. Caffò AO, De Caro MF, Picucci L, Notarnicola A, Settanni A, Livrea P, Lancioni GE, Bosco A. Reorientation deficits are associated with amnestic mild cognitive impairment. Am J Alzheimers Dis Other Demen. 2012;27(5):321–30. DOI: 10.1177/1533317512452035

15. Hegarty M., & Waller D. (2004). A dissociation between mental rotation and perspective taking spatial abilities. Intelligence. 2004;32:175–191.

16. Stewart E. E. M., Hartmann F.T., Morgenstern Y., Storrs K.R., Maiello G., Fleming R.W. Mental object rotation based on two-dimensional visual representations. Curr. Biol. 2022;32:R1224–R1225. DOI: 10.1016/j.cub.2022.09.036

17. Julian JB, Keinath AT, Marchette SA, Epstein RA.The neurocognitive basis of spatial reorientation. Curr Biol. 2018;28(17):R1059-R1073. DOI: 10.1016/j.cub.2018.04.057

18. Montana JI, Tuena C, Serino S, Cipresso P, Riva G. Neurorehabilitation of Spatial Memory Using Virtual Environments: A Systematic Review. J Clin Med. 2019 Sep 20;8(10):1516. DOI: 10.3390/jcm8101516

19. Huang Y, Zhang X, Tang J, Xia Y, Yang X, Zhang Y, Wei C, Ruan R, Ying H, Liu Y. Vestibular cognition assessment system: Tablet-based computerized visuospatial abilities test batter. Front Psychol. 2023;14:1095777. DOI: 10.3389/fpsyg.2023.1095777

20. Piccardi L, Iaria G, Bianchini F, Zompanti L, Guariglia C. Dissociated deficits of visuo-spatial memory in near space and navigational space: evidence from brain-damaged patients and healthy older participants. Neuropsychol Dev Cogn B Aging Neuropsychol Cogn. 201;18(3):362–84. DOI: 10.1080/13825585.2011.560243

21. Carelli L, Rusconi ML, Scarabelli C, Stampatori C, Mattioli F, Riva G. The transfer from survey (map-like) to route representations into virtual reality mazes: effect of age and cerebral lesion. J Neuroeng Rehabil. 2011;8:6. DOI: 10.1186/1743-0003-8-6

22. Salimi S, Irish M, Foxe D, Hodges JR, Piguet O, Burrell JR. Can visuospatial measures improve the diagnosis of Alzheimer’s disease? Alzheimers Dement (Amst). 2017;10:66–74. DOI: 10.1016/j.dadm.2017.10.004

23. Liu S, Wei W, Chen Y, Hugo P , Zhao J. Visual–Spatial Ability Predicts Academic Achievement Through Arithmetic and Reading Abilities. Front. Psychol. 2021; 11:591308. DOI: 10.3389/fpsyg.2020.591308

24. Serino S, Pedroli E, Tuena C, De Leo G, Stramba-Badiale M, Goulene K, Mariotti NG and Riva G. (2017) A Novel Virtual Reality-Based Training Protocol for the Enhancement of the “Mental Frame Syncing” in Individuals with Alzheimer’s Disease: A Development-of-Concept Trial. Front. Aging Neurosci. 2017; 9:240. DOI: 10.3389/fnagi.2017.00240

25. Tuena C, Mancuso V, Stramba-Badiale C, Pedroli E, Stramba-Badiale M, Riva G, Repetto C.J Egocentric and Allocentric Spatial Memory in Mild Cognitive Impairment with Real-World and Virtual Navigation Tasks: A Systematic Review. Alzheimers Dis. 2021;79(1):95–116. DOI: 10.3233/JAD-201017

26. Moraresku S, Hammer J, Janca R, Jezdik P, Kalina A, Marusic P, Vlcek K. Timing of Allocentric and Egocentric Spatial Processing in Human Intracranial EEG. Brain Topogr. 2023;36(6):870–889. DOI: 10.1007/s10548-023-00989-2

27. Morganti F., Stefanini, S., & Riva, G. From alloto egocentric spatial ability in early Alzheimer’s disease: a study with virtual reality spatial tasks. Cognitive Neuroscience. 2013;4(3–4):171–180. DOI: 10.1080/17588928.2013.854762

28. Laczó J, Andel R, Vyhnalek M, Vlcek K, Nedelska Z, Matoska V, Gazova I, Mokrisova I, Sheardova K, Hort J. APOE and Spatial Navigation in Amnestic MCI: Results From a Computer-Based Test. Neuropsychology. 2014;28(5):676–684. DOI: 10.1037/neu0000072

29. da Costa RQM, Pompeu JE, Moretto E, Silva JM, Dos Santos MD, Nitrini R, Brucki SMD. Two Immersive Virtual Reality Tasks for the Assessment of Spatial Orientation in Older Adults with and Without Cognitive Impairment: Concurrent Validity, Group Comparison, and Accuracy Results. J Int Neuropsychol Soc. 2022 May;28(5):460–472. DOI: 10.1017/S1355617721000655

30. Tangen GG, Nilsson MH, Stomrud E, Palmqvist S, Hansson O. Spatial Navigation and Its Association With Biomarkers and Future Dementia in Memory Clinic Patients Without Dementia. Neurology. 2022;99(19):e2081-e2091. DOI: 10.1212/WNL.0000000000201106

31. Lee JY, Kho S, Yoo HB, Park S, Choi JS, Kwon JS, Cha KR, Jung HY. Spatial memory impairments in amnestic mild cognitive impairment in a virtual radial arm maze. Neuropsychiatr Dis Treat. 2014;10:653–60. DOI: 10.2147/NDT.S58185

32. Thompson S.B.N. , Ennis E., Coffin T., Farman S. Design and evaluation of a computerised version of the Benton visual retention test. Computers in Human Behavior. 2007;23(5):2383–2393. DOI: 10.1016/j.chb.2006.03.014

33. Tippett WJ, Lee JH, Zakzanis KK, Black SE, Mraz R, Graham SJ. Visually navigating a virtual world with real-world impairments: a study of visually and spatially guided performance in individuals with mild cognitive impairments. J Clin Exp Neuropsychol. 2009;31(4):447–54. DOI: 10.1080/13803390802251360

34. Diersch N., Wolber T.The potential of virtual reality for spatial navigation research across the adult lifespan. Journal of Experimental Biology. 2019;222:jeb187252. DOI: 10.1242/jeb.187252

35. Terruzzi S, Albini F, Massetti G, Etzi R, Gallace A, Vallar G. The Neuropsychological Assessment of Unilateral Spatial Neglect Through Computerized and Virtual Reality Tools: A Scoping Review. Neuropsychol Rev. 2023;13:1–39. DOI: 10.1007/s11065-023-09586-3

36. Claessen MH, van der Ham IJ, van Zandvoort MJ. Computerization of the Standard Corsi Block-Tapping Task Affects Its Underlying Cognitive Concepts: A Pilot Study. Applied Neuropsychology: Adult. 2015;22:3:180–188. DOI: 10.1080/23279095.2014.892488

37. Campbell A, Gustafsson L, Grimley R, Gullo H, Rosbergen I, Summers M. Mapping the trajectory of acute mild-stroke cognitive recovery using serial computerised cognitive assessment. Brain Impair. 2023;24(3):629–648. DOI: 10.1017/BrImp.2022.24

38. Jeung S, Hilton C, Berg T, Gehrke L, Gramann K. Virtual Reality for Spatial Navigation. Curr Top Behav Neurosci. 2023;65:103–129. DOI: 10.1007/7854_2022_403

39. Ruggiero G, Ruotolo F, Iavarone A, Iachini T. Allocentric coordinate spatial representations are impaired in aMCI and Alzheimer’s disease patients. Behav Brain Res. 2020;393:112793. DOI: 10.1016/j.bbr.2020.112793

40. Migo EM, O’Daly O, Mitterschiffthaler M, Antonova E, Dawson GR, Dourish CT, Craig KJ, Simmons A, Wilcock GK, McCulloch E, Jackson SH, Kopelman MD, Williams SC, Morris RG. Investigating virtual reality navigation in amnestic mild cognitive impairment using fMRI. Neuropsychol Dev Cogn B Aging Neuropsychol Cogn. 2015;23(2):196–217. doi: 10.1080/13825585.2015.1073218

41. Plaza-Rosales I, Brunetti E, Montefusco-Siegmund R, Madariaga S, Hafelin R, Ponce DP, Behrens MI, Maldonado PE, Paula-Lima A. Visual-spatial processing impairment in the occipital-frontal connectivity network at early stages of Alzheimer’s disease. Front Aging Neurosci. 2023; 15:1097577. DOI: 10.3389/fnagi.2023.1097577

42. Hanert A, Schönfeld R, Weber FD, Nowak A, Döhring J, Philippen S, Granert O, Burgalossi A, Born J, Berg D, Göder R, Häussermann P, Bartsch T. Reduced overnight memory consolidation and associated alterations in sleep spindles and slow oscillations in early Alzheimer’s disease. Neurobiol Dis. 2024;190:106378. DOI: 10.1016/j.nbd.2023.106378

43. Tu S, Wong S, Hodges JR, Irish M, Piguet O, Hornberger M. Lost in spatial translation — A novel tool to objectively assess spatial disorientation in Alzheimer’s disease and frontotemporal dementia. Cortex. 2015;67:83–94. DOI: 10.1016/j.cortex.2015.03.016

44. Tarnanas I, Laskaris N, Tsolaki M, Muri R, Nef T, Mosimann UP. On the comparison of a novel serious game and electroencephalography biomarkers for early dementia screening. Adv Exp Med Biol. 2015;821:63–77. DOI: 10.1007/978-3-319-08939-3_11

45. Howett D, Castegnaro A, Krzywicka K, Hagman J, Marchment D, Henson R, Rio M, King JA, Burgess N, Chan D (2019) Differentiation of mild cognitive impairment using an entorhinal cortex-based test of virtual reality navigation. Brain. 2019 Jun 1;142(6):1751–1766. DOI: 10.1093/brain/awz116

46. Lowry E, Puthusseryppady V, Coughlan G, Jeffs S , Hornberger M. Path Integration Changes as a Cognitive Marker for Vascular Cognitive Impairment?—A Pilot Study. Front. Hum. Neurosci. 2020; 14:131. DOI: 10.3389/fnhum.2020.00131

47. Bayahya AY, Alhalabi W, AlAmri SH. Smart Health System to Detect Dementia Disorders Using Virtual Reality. Healthcare (Basel). 2021;9(7):810. DOI: 10.3390/healthcare9070810

48. Poos JM, van der Ham IJM, Leeuwis AE, Pijnenburg YAL, van der Flier WM, Postma A. Short Digital Spatial Memory Test Detects Impairment in Alzheimer’s Disease and Mild Cognitive Impairment.Brain Sci. 2021 Oct 14;11(10):1350. DOI: 10.3390/brainsci11101350

49. Laczó M, Wiener JM, Kalinova J, Matuskova V, Vyhnalek M, Hort J, Laczó J. Spatial Navigation and Visuospatial Strategies in Typical and Atypical Aging. Brain Sci. 2021 Oct 27;11(11):1421. DOI: 10.3390/brainsci11111421

50. Laczó M, Martinkovic L, Lerch O, Wiener JM, Kalinova J, Matuskova V, Nedelska Z, Vyhnalek M, Hort J, Laczó J. Different Profiles of Spatial Navigation Deficits In Alzheimer’s Disease Biomarker-Positive Versus Biomarker-Negative Older Adults With Amnestic Mild Cognitive Impairment. Front Aging Neurosci. 2022 Jun 2;14:886778. DOI: 10.3389/fnagi.2022.886778

51. Clay F., Howett D., FitzGerald J., Fletcher P., Chan D., Price A. Use of Immersive Virtual Reality in the Assessment and Treatment of Alzheimer’s Disease: A Systematic Review.J Alzheimers Dis. 2020;75(1):23–43. DOI: 10.3233/JAD-191218


Review

For citations:


Grigoryeva V.N., Semaka M.A. Impaired spatial orientation and navigation as an early sign of Alzheimer’s disease: diagnosis using virtual reality technologies. Russian neurological journal. 2024;29(6):4-14. (In Russ.) https://doi.org/10.30629/2658-7947-2024-29-6-4-14

Views: 303


ISSN 2658-7947 (Print)
ISSN 2686-7192 (Online)