Clinical and immune markers of age-dependent cerebral microangiopathy
https://doi.org/10.30629/2658-7947-2024-29-5-37-45
Abstract
The aim of the study was to investigate the pattern of cognitive impairment and immune status of patients with MRI changes corresponding to CMA.
Material and methods. 65 patients with CMA according to the MRI criteria were examined. Depending on the degree of white matter hyperintensity (Fazekas scale), patients were divided into 2 groups: Group 1 — 40 patients with Fazekas stage 2; Group 2 — 25 patients with Fazekas stage 3. The control group consisted of 24 patients of the corresponding age category without MRI signs of CMA. Cognitive function was investigated using MoCA and additional tests to assess memory, executive function, attention, perception and praxis. Laboratory diagnostics included assessment of interleukin concentrations (IL), monocyte chemoattractant proteins (MCP-1/CCL2, MCP-2/CCL8, MCP-3/CCL-7, MCP-4/CCL13), macrophage inflammatory protein-1d (MIP-1d /CCL15), myeloid progenitor inhibitory factor — 1, (MPIF-1/CCL23) and tumor necrosis factor alpha (TNFα).
Results. Compared to the control group, patients in groups 1 and 2 showed more pronounced cognitive dysfunction, lacunar lesions, prevalence of hypertension and obesity, in the 2nd group of patients — prevalence of MRI — signs of CMA, decreased memory, perception and executive functions. Increased level of IL-16 in patients of both groups, higher concentrations of MCP-1/CCL2, MCP-2/CCL8, and MIP-1 d/CCL15, IL-6, IL-1b and TNFα were found in the 2nd group compared to the 1st and the control groups.
Conclusion. Progression of cerebral microangiopathy objectified by MRI data is accompanied by increasing cognitive deficit mainly in the mnestic and executive spheres. The results of the study allow us to consider increased IL-16 production as an indicator of CMA progression, and the expression of IL-1b, IL-6, TNFα, MCP-1/CCL2, MCP-2/ CCL8 and MIP-1d/CCL15 as biomarkers of athero- and angiogenesis in patients with severe cerebral microangiopathy.
About the Authors
A. M. TynterovaRussian Federation
Kaliningrad
E. R. Barantsevich
Russian Federation
St Petersburg
N. N. Shusharina
Russian Federation
Kaliningrad
M. S. Khoymov
Russian Federation
Kaliningrad
A. V. Gorbacheva
Russian Federation
Kaliningrad
References
1. Khrulev A.E., Shiyanova N.A., Grigorieva V.N., Vlasov G.N., Kоzulina L.S., Egorskaya A.T. Cerebral microangiopathy according to magnetic resonance imaging of the brain in patients undergoing long-term programmed hemodialysis. Russian Neurological Journal. 2022;27(2):43–52 (Russian). https://doi.org/10.30629/2658-7947-2022-27-2-43-52
2. Duering M, Biessels GJ, Brodtmann A, Chen C, Cordonnier C, de Leeuw FE, Debette S, Frayne R, Jouvent E, Rost NS, Ter Telgte A, Al-Shahi Salman R, Backes WH, Bae HJ, Brown R, Chabriat H, De Luca A, deCarli C, Dewenter A, Doubal FN, Ewers M, Field TS, Ganesh A, Greenberg S, Helmer KG, Hilal S, Jochems ACC, Jokinen H, Kuijf H, Lam BYK, Lebenberg J, MacIntosh BJ, Maillard P, Mok VCT, Pantoni L, Rudilosso S, Satizabal CL, Schirmer MD, Schmidt R, Smith C, Staals J, Thrippleton MJ, van Veluw SJ, Vemuri P, Wang Y, Werring D, Zedde M, Akinyemi RO, Del Brutto OH, Markus HS, Zhu YC, Smith EE, Dichgans M, Wardlaw JM. Neuroimaging standards for research into small vessel disease-advances since 2013. Lancet Neurol. 2023 Jul;22(7):602–618. https://doi.org/10.1016/S1474-4422(23)00131-X.
3. Bir SC, Khan MW, Javalkar V, Toledo EG, Kelley RE. Emerging Concepts in Vascular Dementia: A Review. J Stroke Cerebrovasc Dis. 2021 Aug;30(8):105864. https://doi.org/10.1016/j.jstrokecerebrovasdis.2021.105864.
4. Soloveva EY, Amelina IP. Cerebral small vessel disease’s impact on the development of chronic cerebral ischemia: paradigms of treatment. Medical Council. 2020 ;( 2):16–24 (Russian). https://doi.org/10.21518/2079-701X-2020-2-16-24
5. Zhang DD, Cao Y, Mu JY, Liu YM, Gao F, Han F, Zhai FF, Zhou LX, Ni J, Yao M, Li ML, Jin ZY, Zhang SY, Cui LY, Shen Y, Zhu YC. Inflammatory biomarkers and cerebral small vessel disease: a community-based cohort study. Stroke Vasc Neurol. 2022 Aug;7(4):302–309. https://doi.org/10.1136/svn-2021-001102.
6. Hughes C. E., Nibbs, R. J. B. A guide to chemokines and their receptors. FEBS J. 2018 Aug;285(16):2944–2971. https://doi.org/10.1111/febs.14466.
7. Feng Y. Q., Xu Z. Z., Wang Y. T., Xiong Y., Xie W., He Y. Y., Chen L., Liu G. Y., Li X., Liu J., Wu Q. Targeting C-C Chemokine Receptor 5: Key to Opening the Neurorehabilitation Window After Ischemic Stroke. Front Cell Neurosci. 2022 Apr 28;16:876342. https://doi.org/10.3389/fncel.2022.876342.
8. Bogolepova AN, Mkhitaryan EA, Levin OS. Cognitive impairment in cerebrovascular diseases. S.S. Korsakov Journal of Neurology and Psychiatry. 2024;124(4–2):12–16 (Russian). https://doi.org/10.17116/jnevro202412404212
9. Gulevskaya TS, Anufriev PL, Evdokimenko AN. Current state of cerebral microangiopathy in hypertension. Russian Journal of Archive of Pathology. 2021;83(6):45–53 (Russian). https://doi.org/10.17116/patol20218306145
10. Mkhitaryan E.A., Fateeva V.V. Age-Dependent Cerebral Microangiopathy Associated with Vascular Risk Factors: How to Recognize the Signs? Russian Journal of Geriatric Medicine. 2024;(1):49–55 (Russian). https://doi.org/10.37586/2686-86361-2024-49-55
11. Dri E, Lampas E, Lazaros G, Lazarou E, Theofilis P, Tsioufis C, Tousoulis D. Inflammatory Mediators of Endothelial Dysfunction. Life (Basel). 2023 Jun 20;13(6):1420. https://doi.org/10.3390/life13061420.
12. Dobrynina LA, Gnedovskaya EV, Zabitova MR, Kremneva EI, Shabalina AA, Makarova AG, Tzipushtanova MM, Filatov AS, Kalashnikova LA, Krotenkova MV. Clustering of diagnostic MRI signs of cerebral microangiopathy and its relationship with markers of inflammation and angiogenesis. S.S. Korsakov Journal of Neurology and Psychiatry. 2020;120(12–2):22–31 (Russian) https://doi.org/10.17116/jnevro202012012222
13. Mussbacher M, Salzmann M, Brostjan C, Hoesel B, Schoergenhofer C, Datler H, Hohensinner P, Basílio J, Petzelbauer P, Assinger A, Schmid JA. Cell Type-Specific Roles of NF-κB Link-ing Inflammation and Thrombosis. Front Immunol. 2019 Feb 4;10:85. https://doi.org/10.3389/fimmu.2019.00085.
14. Ren B, Tan L, Song Y, Li D, Xue B, Lai X, Gao Y. Cerebral Small Vessel Disease: Neuroimaging Features, Biochemical Markers, Influencing Factors, Pathological Mechanism and Treatment. Front Neurol. 2022 Jun 14;13:843953. https://doi.org/10.3389/fneur.2022.843953.
15. Kong Q, Xie X, Wang Z, Zhang Y, Zhou X, Wu L, Yu Z, Huang H, Luo X. Correlations of Plasma Biomarkers and Imaging Characteristics of Cerebral Small Vessel Disease. Brain Sci. 2024 Mar 12;14(3):269. https://doi.org/10.3390/brainsci14030269.
16. Singh S, Anshita D, Ravichandiran V. MCP-1: Function, regulation, and involvement in disease. Int Immunopharmacol. 2021 Dec;101(Pt B):107598. https://doi.org/10.1016/j.intimp.2021.107598.
17. Nurzhanova Z.M., Bashkina O.A., Samotrueva M.A., Shilova A.A. Pathogenetic role of monocytic chemoattractant. Doctor.Ru. 2023;22(7):53–57 (Russian). https://doi.org/10.31550/1727-2378-2023-22-7-53-57
18. Jian B, Hu M, Cai W, Zhang B, Lu Z. Update of Immunosenescence in Cerebral Small Vessel Disease. Front Immunol. 2020 Nov 18;11:585655. https://doi.org/10.3389/fimmu.2020.585655.
19. Pang N, Lin Z, Wang X, Xu L, Xu X, Huang R, Li X, Li X, Li J. Endothelial cell-derived CCL15 mediates the transmigration of fibrocytes through the CCL15-CCR1 axis in vitro. Mol Med Rep. 2020 Dec;22(6):5339–5347. https://doi.org/10.3892/mmr.2020.11610.
20. Xue S, Tang H, Zhao G, Fang C, Shen Y, Yan D, Yuan Y, Fu W, Shi Z, Tang X, Guo D. C-C motif ligand 8 promotes atherosclerosis via NADPH oxidase 2/reactive oxygen species-induced endothelial permeability increase. Free Radic Biol Med. 2021 May 1;167:181–192. https://doi.org/10.1016/j.freeradbiomed.2021.02.022.
Review
For citations:
Tynterova A.M., Barantsevich E.R., Shusharina N.N., Khoymov M.S., Gorbacheva A.V. Clinical and immune markers of age-dependent cerebral microangiopathy. Russian neurological journal. 2024;29(5):37-45. (In Russ.) https://doi.org/10.30629/2658-7947-2024-29-5-37-45