Preview

Russian neurological journal

Advanced search
Open Access Open Access  Restricted Access Subscription Access

The role of neurotrophic factors during rehabilitation therapy in patients with cerebral palsy

https://doi.org/10.30629/2658-7947-2024-29-5-23-30

Abstract

Blood concentration of neurotrophic factors (NTF) in patients with cerebral palsy after the use of the “non-invasive brain-computer-exohand interface” technique demonstrated a decrease in the level of NTFs on the 10th day after rehabilitation training, which was accompanied by an improvement in motor, cognitive functions and emotional status of patients. Moreover, different NTFs demonstrated different levels of concentration changes. The literature base about influence of NTFs on the mechanisms of neuroplasticity was analyzed. The review presents the results of studies on the therapeutic targets of NTFs and their different abilities to penetrate the blood-brain barrier, which apparently explains their participation in the processes of neuroplasticity. Analysis of literature data indicates the active involvement of NTF in the mechanisms of functional restructuring and their possible role in restoring motor activity in children with cerebral palsy, positive effect on cognitive functions and emotional status.

About the Authors

L. L. Korsunskaya
V.I. Vernadsky Crimean Federal University, Medical Institute named after S.I. Georgievsky
Russian Federation

Simferopol



E. S. Ageeva
V.I. Vernadsky Crimean Federal University, Medical Institute named after S.I. Georgievsky
Russian Federation

Simferopol



N. V. Larina
V.I. Vernadsky Crimean Federal University, Medical Institute named after S.I. Georgievsky
Russian Federation

Simferopol



References

1. Larina N.V., Gordienko A.I., Korsunskaya L.L., Khimich N.V. The role of neurotrophic factors in the rehabilitation of children with cerebral palsy. Neurology, Neuropsychiatry, Psychosomatics. 2022;14(6):12–19. (In Russ.) https://doi.org/10.14412/2074-2711-2022-6-12-19

2. M.G. Sokolova, Т.М. Alekseeva, S.V. Lobzin, V.S. Demeshonok, О.А. Nikishina, N.V. Ulyanova. Prospects of application of neurotrophic factors in clinical neurology. Mechnikov North-West State Medical University Bulletin, 2014;6(3):75–81 Available at: https://cyberleninka.ru/article/n/neyrotrofi cheskie-faktory-perspektivyprimeneniya-v-klinicheskoy-nevrologii

3. Kulakova Elena N., Nastausheva Tatjana L., Kondratjeva Inna V. Scoping Review Methodology: History, Theory and Practice. Voprosy sovremennoi pediatrii — Current Pediatrics. 2021;20(3):210–222. https://doi.org/10.15690/vsp.v20i3/227

4. Mateos-Aparicio P, Rodríguez-Moreno A. The Impact of Studying Brain Plasticity. Front Cell Neurosci. 2019;13:66. https://doi.org/10.3389/fncel.2019.00066

5. Pan W, Banks WA, Fasold MB, Bluth J, Kastin AJ. Transport of brain-derived neurotrophic factor across the blood-brain barrier. Neuropharmacology. 1998 Dec;37(12):1553–61. https://doi.org/10.1016/s0028-3908(98)00141-5

6. Klein AB, Williamson R, Santini MA, Clemmensen C, Ettrup A, Rios M, Knudsen GM, Aznar S. Blood BDNF concentrations refl ect brain-tissue BDNF levels across species. Int J Neuropsychopharmacol. 2011;14:347–353.https://doi.org/10.1017/S1461145710000738

7. Xhima K, Aubert I. The therapeutic potential of nerve growth factor combined with blood-brain barrier modulation by focused ultrasound for neurodegenerative disorders. Neural Regen Res. 2021 Sep;16(9):1783–1785. https://doi.org/10.4103/1673-5374.306076

8. Conrad Earl Johanso, John E. Donahue, Edward Stopa, Andrew Baird. Fibroblast Growth Factor And The Blood-Brain Barrier. In book: Handbook of Biologically Active Peptides, Second Edition, 2013, (pp.1449-1454) https://doi.org/10.1016/B978-012369442-3/50205-1

9. Pan W, Kastin AJ. Interactions of IGF-1 with the blood-brain barrier in vivo and in situ. Neuroendocrinology. 2000 Sep;72(3):171–8. https://doi.org/10.1159/000054584

10. Pan W, Kastin AJ, Maness LM, Brennan JM. Saturable entry of ciliary neurotrophic factor into brain. Neurosci Lett. 1999 Mar 19;263(1):69–71. https://doi.org/10.1016/s0304-3940(99)00083-x

11. Poduslo JF, Curran GL. Permeability at the blood-brain and bloodnerve barriers of the neurotrophic factors: NGF, CNTF, NT-3, BDNF. Brain Res Mol Brain Res. 1996 Mar;36(2):280–6. https://doi.org/10.1016/0169-328x(95)00250-v

12. Huang EJ, Reichardt LF. Neurotrophins: roles in neuronal development and function. Annu Rev Neurosci. 2001;24:677–736. https://doi.org/10.1146/annurev.neuro.24.1.677

13. Keefe KM, Sheikh IS, Smith GM. Targeting Neurotrophins to Specifi c Populations of Neurons: NGF, BDNF, and NT-3 and Their Relevance for Treatment of Spinal Cord Injury. International Journal of Molecular Sciences. 2017;18(3):548. https://doi. org/10.3390/ijms18030548

14. Lu P, Blesch A, Tuszynski MH. Neurotrophism without neurotropism: BDNF promotes survival but not growth of lesioned corticospinal neurons. J Comp Neurol. 2001 Aug 6;436(4):456–70. https://doi.org/10.1002/cne.1080

15. Sasaki M, Radtke C, Tan AM, Zhao P, Hamada H, Houkin K, Honmou O, Kocsis JD. BDNF-hypersecreting human mesenchymal stem cells promote functional recovery, axonal sprouting, and protection of corticospinal neurons after spinal cord injury. J Neurosci. 2009 Nov 25;29(47):14932–41 https://doi.org/10.1523/JNEUROSCI.2769-09.2009

16. Brock JH, Rosenzweig ES, Blesch A, Moseanko R, Havton LA, Edgerton VR, Tuszynski MH. Local and remote growth factor eff ects after primate spinal cord injury. J Neurosci. 2010 Jul 21;30(29):9728–37. https://doi.org/10.1523/JNEUROSCI.1924-10.2010

17. Maisonpierre PC, Belluscio L, Squinto S, Ip NY, Furth ME, Lindsay RM, Yancopoulos GD. Neurotrophin-3: a neurotrophic factor related to NGF and BDNF. Science. 1990 Mar 23;247(4949 Pt 1):1446–51. https://doi.org/10.1126/science.247.4949.1446

18. Schnell L, Schneider R, Kolbeck R, Barde YA, Schwab ME. Neurotrophin-3 enhances sprouting of corticospinal tract during development and after adult spinal cord lesion. Nature. 1994 Jan 13;367(6459):170–3. https://doi.org/10.1038/367170a0

19. Gao Z, Feng Y, Ju H. The Diff erent Dynamic Changes of Nerve Growth Factor in the Dorsal Horn and Dorsal Root Ganglion Leads to Hyperalgesia and Allodynia in Diabetic Neuropathic Pain. Pain Physician. 2017 May;20(4):551–561. Available at: https://www.painphysicianjournal.com/current/pdf?article=NDQxOA%3D%3 D&journal=105

20. McArthur JC, Yiannoutsos C, Simpson DM, Adornato BT, Singer EJ, Hollander H, Marra C, Rubin M, Cohen BA, Tucker T, Navia BA, Schifi tto G, Katzenstein D, Rask C, Zaborski L, Smith ME, Shriver S, Millar L, Cliff ord DB, Karalnik IJ. A phase II trial of nerve growth factor for sensory neuropathy associated with HIV infection. AIDS Clinical Trials Group Team 291. Neurology. 2000 Mar 14;54(5):1080–8. https://doi.org/10.1212/wnl.54.5.1080

21. Tep C., Lim T.H., Ko P.O., Getahun S., Ryu J.C., Goettl V.M., Massa S.M., Basso M., Longo F.M., Yoon S.O. Oral administration of a small molecule targeted to block proNGF binding to p75 promotes myelin sparing and functional recovery after spinal cord injury. J. Neurosci. 2013, 33, 397–410 doi: 10.1523/JNEUROSCI.0399-12.2013

22. Pehar M., Cassina P., Vargas M.R., Xie Y., Beckman J.S., Massa S.M., Longo F.M., Barbeito L. Modulation of p75-dependent motor neuron death by a small non-peptidyl mimetic of the neurotrophin loop 1 domain. Eur. J. Neurosci. 2006, 24, 1575– 1580. doi: 10.1111/j.1460-9568.2006.05040.x

23. Numakawa T., Odaka H. The Role of Neurotrophin Signaling in Age-Related Cognitive Decline and Cognitive Diseases. Int. J. Mol. Sci. 2022, 23, 7726. https://doi.org/10.3390/ijms23147726

24. McPhee GM, Downey LA, Stough C. Neurotrophins as a reliable biomarker for brain function, structure and cognition: A sys tematic review and meta-analysis. Neurobiol Learn Mem. 2020 Nov;175:107298. https://doi.org/10.1016/j.nlm.2020.107298

25. Egan MF, Kojima M, Callicott JH, Goldberg TE, Kolachana BS, Bertolino A, Zaitsev E, Gold B, Goldman D, Dean M, Lu B, Weinberger DR. The BDNF val66met polymorphism aff ects activity-dependent secretion of BDNF and human memory and hippocampal function. Cell. 2003 Jan 24;112(2):257–69. https://doi.org/10.1016/s0092-8674(03)00035-7

26. Gao L, Zhang Y, Sterling K, Song W. Brain-derived neurotrophic factor in Alzheimer’s disease and its pharmaceutical potential. Transl Neurodegener 2022;11,4. https://doi.org/10.1186/s40035-022-00279-0

27. Braskie MN, Kohannim O, Jahanshad N, Chiang MC, Barysheva M, Toga AW, Ringman JM, Montgomery GW, McMahon KL, de Zubicaray GI, Martin NG, Wright MJ, Thompson PM. Relation between variants in the neurotrophin receptor gene, NTRK3, and white matter integrity in healthy young adults. Neuroimage 2013;82:146–53. 76. https://doi.org/10.1016/j.neuroimage.2013.05.095

28. Otnaess MK, Djurovic S, Rimol LM, Kulle B, Kähler AK, Jönsson EG, Agartz I, Sundet K, Hall H, Timm S, Hansen T, Callicott JH, Melle I, Werge T, Andreassen OA.Evidence for a possible association of neurotrophin receptor (NTRK3) gene polymorphisms with hippocampal function and schizophrenia. Neurobiol Dis 2009;34:518–24 https://doi.org/10.1016/j.nbd.2009.03.011

29. Sanwald, S, Montag, C, Kiefer M. Depressive Emotionality Moderates the Infl uence of the BDNF Val66Met Polymorphism on Executive Functions and on Unconscious Semantic Priming. J Mol Neurosci 2020;70, 699–712. https://doi.org/10.1007/s12031-020- 01479-x

30. Quan R, Wu Z, Guo W, He L, Fang P, Gong P. The BDNF Val66Met polymorphism impacts victim’s moral emotions following interpersonal transgression. Scand J Psychol. 2021 Feb;62(1):7– 12. https://doi.org/10.1111/sjop.12678

31. Yanlong Liu, Dongsheng Yu, Xiaofang Wang, Xiaohua Tan, Xianming Luo, Hongzhen Fan, Yimin Kang, Jian Xiao, Xiaokun Li, Fan Wang. Is Cerebrospinal Fluid Fibroblast Growth Factor 19 (FGF19) a mood regulator? Neuropsychiatry 2017;7(2):126–130 https://doi.org/10.4172/Neuropsychiatry.1000187

32. Cubillos S, Engmann O, Brancato A. BDNF as a Mediator of Antidepressant Response: Recent Advances and Lifestyle Interactions. Int J Mol Sci. 2022 Nov 21;23(22):14445. https://doi.org/10.3390/ ijms232214445

33. Arosio B, Guerini FR, Voshaar RCO, Aprahamian I. Blood BrainDerived Neurotrophic Factor (BDNF) and Major Depression: Do We Have a Translational Perspective? Front Behav Neurosci. 2021 Feb 12;15:626906. https://doi.org/10.3389/fnbeh.2021.626906

34. Deltheil T, Guiard BP, Guilloux JP, Nicolas L, Deloménie C, Repérant C, Le Maitre E, Leroux-Nicollet I, Benmansour S, Coudoré F, David DJ, Gardier AM. Consequences of changes in BDNF levels on serotonin neurotransmission, 5-HT transporter expression and function: studies in adult mice hippocampus. Pharmacol Biochem Behav. 2008 Aug;90(2):174–83. https://doi.org/10.1016/j.pbb.2007.09.018

35. Allen AP, Naughton M, Dowling J, Walsh A, Ismail F, Shorten G, Scott L, McLoughlin DM, Cryan JF, Dinan TG, Clarke G. Serum BDNF as a peripheral biomarker of treatment-resistant depression and the rapid antidepressant response: A comparison of ketamine and ECT. J Aff ect Disord. 2015 Nov1;86:306–11. https://doi.org/10.1016/j.jad.2015.06.033

36. Castrén E, Monteggia L M. Brain-Derived Neurotrophic Factor Signaling in Depression and Antidepressant Action. Biological Psychiatry: Volume 90, Issue 2, 15 July 2021, P. 128–136. https:// doi.org/10.1016/j.biopsych.2021.05.008

37. Yang T, Nie Z, Shu H, Kuang Y, Chen X, Cheng J, Yu S and Liu H. The Role of BDNF on Neural Plasticity in Depression. Front. Cell. Neurosci.2020;14:82. https://doi.org/10.3389/fncel.2020.00082

38. Miyanishi H, Nitta A. A Role of BDNF in the Depression Pathogenesis and a Potential Target as Antidepressant: The Modulator of Stress Sensitivity “Shati/Nat8l-BDNF System” in the Dorsal Striatum. Pharmaceuticals. 2021;14(9):889. https://doi.org/10.3390/ph14090889

39. Nazareth, A. M. BDNF, A Focus to Major Depression. Open Journal of Psychology, 2021;1(1):10–21. DOI: 10.31586/ojp.2021.161

40. De Miranda AS, de Barros JLVM, Teixeira AL. Is neurotrophin-3 (NT-3): a potential therapeutic target for depression and anxiety? Expert Opin Ther Targets. 2020 Dec;24(12):1225–1238. doi: 10.1080/14728222.2020.1846720

41. Al-Samerria S, Radovick S. The Role of Insulin-like Growth Factor-1 (IGF-1) in the Control of Neuroendocrine Regulation of Growth. Cells. 2021;10(10):2664. https://doi.org/10.3390/cells10102664

42. Clemmons DR. Role of IGF-binding proteins in regulating IGF responses to changes in metabolism. J Mol Endocrinol. 2018 Jul;61(1):T139-T169. https://doi.org/10.1530/JME-18-0016

43. Vitale G, Pellegrino G, Vollery M, Hofl and LJ. ROLE of IGF1 System in the Modulation of Longevity: Controversies and New Insights From a Centenarians’ Perspective. Front Endocrinol (Lausanne). 2019 Feb 1;10:27. https://doi.org/10.3389/fendo.2019.00027

44. Mueller PL, Pritchett CE, Wiechman TN, Zharikov A, Hajnal A. Antidepressant-like eff ects of insulin and IGF-1 are mediated by IGF-1 receptors in the brain. BrainResearch Bulletin. 2018;143:27– 35. https://doi.org/10.1016/j.brainresbull.2018.09.017

45. Askmyr M, White KE, Jovic T, King HA, Quach JM, Maluenda AC, Baker EK, Smeets MF, Walkley CR, Purton LE. Ciliary neurotrophic factor has intrinsic and extrinsic roles in regulating B cell differentiation and bone structure. Sci Rep 2015;5:15529. https://doi.org/10.1038/srep15529

46. Lambert PD, Anderson KD, Sleeman MW, Wong V, Tan J, Hijarunguru A, Corcoran TL, Murray JD, Thabet KE, Yancopoulos GD, Wiegand SJ. Ciliary neurotrophic factor activates leptinlike pathways and reduces body fat, without cachexia or rebound weight gain, even in leptin-resistant obesity. Proc Natl Acad Sci USA. 2001 Apr 10;98(8):4652–7. https://doi.org/10.1073/pnas.061034298

47. Cintrón-Colón AF, Almeida-Alves G, Boynton AM, Spitsbergen JM. GDNF synthesis, signaling, and retrograde transport in motor neuron. Cell and Tissue Research. 2020;382(1):47–56. https://doi.org/10.1007/s00441-020-03287-6

48. Manfredsson FP, Polinski NK, Subramanian T, Boulis N, Wakeman DR, Mandel RJ. The Future of GDNF in Parkinson’s Disease. Front Aging Neurosci. 2020 Dec 7;12:593572. https://doi.org/10.3389/fnagi.2020.593572

49. Meir M, Burkard N, Ungewiß H, Diefenbacher M, Flemming S, Kannapin F, Germer CT, Schweinlin M, Metzger M, Waschke J, Schlegel N. Neurotrophic factor GDNF regulates intestinal barrier function in inflammatory bowel disease. J Clin Invest. 2019 Jun 17;129(7):2824–2840. https://doi.org/10.1172/JCI120261

50. Tao L, Ma W, Wu L, Xu M, Yang Y, Zhang W, Sha W, Li H, Xu J, Feng R, Xue D, Zhang J, Dooley S, Seki E, Liu P, Liu C. Glial cell line-derived neurotrophic factor (GDNF) mediates hepatic stellate cell activation via ALK5/Smad signaling. Gut. 2019 Dec;68(12):2214–2227. https://doi.org/10.1136/gutjnl-2018-317872


Review

For citations:


Korsunskaya L.L., Ageeva E.S., Larina N.V. The role of neurotrophic factors during rehabilitation therapy in patients with cerebral palsy. Russian neurological journal. 2024;29(5):23-30. (In Russ.) https://doi.org/10.30629/2658-7947-2024-29-5-23-30

Views: 227


ISSN 2658-7947 (Print)
ISSN 2686-7192 (Online)