Preview

Russian neurological journal

Advanced search

Optical coherence retinal tomography as a prognostic biomarker of multiple sclerosis progression

https://doi.org/10.30629/2658-7947-2024-29-3-16-23

Abstract

   Multiple sclerosis is an autoimmune infl ammatory demyelinating neurodegenerative disabling disease of the central nervous system of multifactorial genesis. In the initial stages of remitting multiple sclerosis, autoimmune inflammation prevails with alternation of exacerbations and remissions, but, subsequently, progressive neurodegeneration develops, which underlies the persistent disability of patients. The transition of remitting multiple sclerosis into a secondary progressive form is a critical factor for long-term prognosis and makes it necessary to find accurate biomarkers, predictors of the risk of transformation of MS. One such marker is the thickness of the nerve fiber layer and ganglion cells, as well as the condition of the retinal microvasculature, which is easily verifi ed by optical coherence tomography (OCT), a non-invasive method that allows for real-time retinal segmentation in the axial plane.

   The aim of this review is to discuss the results achieved in the study and application OCT of the retina as a potential imaging biomarker of multiple sclerosis progression.

About the Authors

T. V. Shchukina
Almazov National Medical Research Center
Russian Federation

St. Petersburg



G. N. Bisaga
Almazov National Medical Research Center
Russian Federation

St. Petersburg



V. A. Malko
Almazov National Medical Research Center
Russian Federation

St. Petersburg



M. P. Topuzova
Almazov National Medical Research Center
Russian Federation

St. Petersburg



K. A. Tolochko
Almazov National Medical Research Center
Russian Federation

St. Petersburg



A. Yu. Dadatsky
Almazov National Medical Research Center
Russian Federation

St. Petersburg



T. M. Alekseeva
Almazov National Medical Research Center
Russian Federation

St. Petersburg



References

1. Kister I, Chamot E, Salter AR, Cutter GR, Bacon TE. Herbert J. Disability in multiple sclerosis: a reference for patients and clinicians. Neurology. 2013;80:1018–1024.

2. Garg N, Smith TW. An update on immunopathogenesis, diagnosis, and treatment of multiple sclerosis. Brain Behav. 2015;5(9):e00362. doi: 10.1002/brb3.362

3. Ghasemi N, Razavi S, Nikzad E. Multiple Sclerosis: Pathogenesis, Symptoms, Diagnoses and Cell-Based Therapy. Cell J. 2017;19(1):1–10. URL: https://www.researchgate.net/publication/314143135_Multiple_Sclerosis_Pathogenesis_Symptoms_Diagnoses_and_Cell-Based_Therapy

4. Jank L, Bhargava P. Relationship Between Multiple Sclerosis, Gut Dysbiosis, and Infl ammation: Considerations for Treatment. Neurol Clin. 2024;42(1):55–76. doi: 10.1016/j.ncl.2023.07.005

5. Healy LM, Stratton JA, Kuhlmann T, Antel J. The role of glial cells in multiple sclerosis disease progression. Nat Rev Neurol. 2022;18(4):237–248. doi: 10.1038/s41582-022-00624-x

6. Vališ M, Achiron A, Hartung HP, Mareš J, Tichá V, Štourač P, et al. The Benefi ts and Risks of Switching from Fingolimod to Siponimod for the Treatment of Relapsing-Remitting and Secondary Progressive Multiple Sclerosis. Drugs R D. 2023;23(4):331–338. doi: 10.1007/s40268-023-00434-6

7. Absinta M, Lassmann H, Trapp BD. Mechanisms underlying progression in multiple sclerosis. Curr Opin Neurol. 2020;33(3):277–285. doi: 10.1097/WCO.0000000000000818

8. Kuhlmann T, Moccia M, Coetzee T, Cohen JA, Correale J, Graves J et al.; International Advisory Committee on Clinical Trials in Multiple Sclerosis. Multiple sclerosis progression: time for a new mechanism-driven framework. Lancet Neurol. 2023;22(1):78–88. doi: 10.1016/S1474-4422(22)00289-7

9. Trufanov A.G., Bisaga G.N., Skulyabin D.I., Tyomnyj A.V., Yurin A.A., Poplyak M.O. et al. The significance of degeneration of thalamic nuclei in relapsing-remitting and secondary progressive multiple sclerosis: results of neuropsychological and morphometric studies. Annals of Clinical and Experimental Neurology = Annaly klinicheskoj i eksperimental’noj nevrologii. 2020;14(3):21–30 (In Russ.). doi: 10.25692/ACEN.2020.3.3

10. Poplyak MO, Trufanov AG, Temniy AV, Maltsev DS, Chakchir OB, Mikheev AV et al. Changes in retinal structures as markers of multiple sclerosis progression. Neurology, Neuropsychiatry, Psychosomatics = Nevrologiya, neiropsikhiatriya, psikhosomatika. 2021;13(6):55–61 (In Russ.). doi: 10.14412/2074-2711-2021-6-55-61

11. Anikina M.A., Matnenko T.Yu., Lebedev O.I. Optical coherence tomography-angiography: a promising method in ophthalmological diagnostics. Practical Medicine = Prakticheskaya medicina. 2018;3:7–10. (In Russ.). URL: https://cyberleninka.ru/article/n/opticheskaya-kogerentnaya-tomografiya-angiografiya-perspektivnyy-metod-v-oftalmologicheskoy-diagnostike

12. Lumbroso B., Huang D., Souied E., Rispoli M. Practical Handbook of OCT Angiography. JP Medical Ltd, 16.05. 2016:116.

13. Chalkias IN, Bakirtzis C, Pirounides D, Boziki MK, Grigoriadis N. Optical Coherence Tomography and Optical Coherence Tomography with Angiography in Multiple Sclerosis. Healthcare (Basel). 2022;10(8):1386. doi: 10.3390/healthcare10081386

14. Britze J, Frederiksen JL. Optical coherence tomography in multiple sclerosis. Eye (Lond). 2018;32(5):884–888. doi: 10.1038/s41433-017-0010-2

15. Testa V, De Santis N, Scotto R, Pastorino CE, Cellerino M, Olivari S, Morlacchi AJ, Neuroaxonal Degeneration in Patients with Multiple Sclerosis: An Optical Coherence Tomography and in Vivo Corneal Confocal Microscopy Study. Cornea. 2020;39(10):1221–1226. doi: 10.1097/ICO.0000000000002396

16. Viladés E, Cordón B, Pérez-Velilla J, Orduna E, Satue M, Polo V et al. Evaluation of multiple sclerosis severity using a new OCT tool. PLoS One. 2023;18(7):e0288581. doi: 10.1371/journal.pone.0288581

17. Petzold A, Balcer LJ, Calabresi PA, Costello F, Frohman TC, Frohman EM et al.; ERN-EYE IMSVISUAL. Retinal layer segmentation in multiple sclerosis : a systematic review and meta-analysis. Lancet Neurol. 2017;16(10):797-812. doi: 10.1016/S1474-4422(17)30278-8

18. Kayhan B, Sevinçli Ş, Demir N, Demir S, Sönmez M. Regional Analysis of Inner Retinal Layer Changes in Multiple Sclerosis with and without Optic Neuritis. Turk J Ophthalmol. 2023;53(3):169–174. doi: 10.4274/tjo.galenos.2023.81486

19. Knier B, Leppenetier G, Wetzlmair C, Aly L, Hoshi MM, Pernpeintner V et al. Association of Retinal Architecture, Intrathecal Immunity, and Clinical Course in Multiple Sclerosis. JAMA Neurol. 2017;74(7):847–856. doi: 10.1001/jamaneurol.2017.0377

20. Knier B., Schmidt P, Aly L. Retinal inner nuclear layer volume refl ects response to immunotherapy in multiple sclerosis. Brain. 2016;139(11): 2855–2863, doi: 10.1093/brain/aww219

21. Cordano C, Yiu HH, Oertel FC; University of California, San Francisco MS-EPIC Team; Gelfand JM, Hauser SL, Cree BAC, Green AJ. Retinal INL Thickness in Multiple Sclerosis: A Mere Marker of Neurodegeneration? Ann Neurol. 2021;89(1):192–193. doi: 10.1002/ana.25933

22. Cellerino M, Cordano C, Boffa G, Bommarito G. Relationship between retinal inner nuclear layer, age, and disease activity in progressive MS. Neurol Neuroimmunol Neuroinfl amm. 2019;6(5):e596. doi: 10.1212/NXI.0000000000000596 PMID: 31454778; PMCID: PMC6705649

23. Vural A., Okar S., Kurne A., Sayat-Gürel G., Acar N.P., Karabulut E., Karabudak R. Retinal degeneration is associated with brain volume reduction and prognosis in radiologically isolated syndrome. Multiple Sclerosis Journal. 2020;26(1):38–47. doi: 10.1177/1352458518817987

24. Aly L, Havla J, Lepennetier G, Andlauer TFM, Sie C, Strauß EM et al. Inner retinal layer thinning in radiologically isolated syndrome predicts conversion to multiple sclerosis. Eur J Neurol. 2020;27(11):2217–2224. doi: 10.1111/ene.14416

25. Kabaeva AR, Boyko AN, Kulakova OG, Favorova OO. Radiologically isolated syndrome: prognosis and predictors of conversion to multiple sclerosis. S.S. Korsakov Journal of Neurology and Psychiatry = Zhurnal nevrologii i psikhiatrii imeni S.S. Korsakova. 2020;120(7 vyp 2):7–12. (In Russ.). doi: 10.17116/jnevro20201200727

26. Granberg T., Martola J., Kristoff ersen-Wiberg M., Aspelin P., Fredrikson S. Radiologically isolated syndrome — incidental magnetic resonance imaging findings suggestive of multiple sclerosis, a systematic review. Multiple Sclerosis Journal. 2012;19(3):271–280. doi: 10.1177/1352458512451943

27. Suthiphosuwan S, Sati P, Guenette M, Montalban X, Reich DS, Bharatha A, Oh J. The Central Vein Sign in Radiologically Isolated Syndrome. AJNR Am J Neuroradiol. 2019;40(5):776–783. doi: 10.3174/ajnr.A6045

28. Filippatou A, Shoemaker T, Esch M, Qutab M, Gonzalez-Caldito N, Prince JL et al. Spinal cord and infratentorial lesions in radiologically isolated syndrome are associated with decreased retinal ganglion cell/inner plexiform layer thickness. Mult Scler. 2019;25(14):1878–1887. doi: 10.1177/1352458518815597

29. Torbus M, Niewiadomska E, Dobrakowski P, Papuć E, Rybus-Kalinowska B, Szlacheta P et al. The Usefulness of Optical Coherence Tomography in Disease Progression Monitoring in Younger Patients with Relapsing-Remitting Multiple Sclerosis: A Single-Centre Study. J Clin Med. 2022;12(1):93. doi: 10.3390/jcm12010093

30. El Ayoubi NK, Bou Reslan SW, Baalbaki MM, Darwish H, Khoury SJ. Eff ect of fingolimod vs interferon treatment on OCT measurements and cognitive function in RRMS. Mult Scler Relat Disord. 2021;53:103041. doi: 10.1016/j.msard.2021.103041

31. Birkeldh U, Manouchehrinia A, Hietala MA, Hillert J, Olsson T, Piehl F et al. Retinal nerve fiber layer thickness associates with cognitive impairment and physical disability in multiple sclerosis. Mult Scler Relat Disord. 2019;36:101414. doi: 10.1016/j.msard.2019.101414

32. Jakimovski D, Benedict RHB, Weinstock-Guttman B, Ozel O, Fuchs TA, Lincoff N et al. Visual defi cits and cognitive assessment of multiple sclerosis: confounder, correlate, or both? J Neurol. 2021;268(7):2578–2588. doi: 10.1007/s00415-021-10437-5

33. Testa V, De Santis N, Scotto R, Pastorino CE, Cellerino M, Olivari S, Morlacchi AJ, Neuroaxonal Degeneration in Patients with Multiple Sclerosis: An Optical Coherence Tomography and in Vivo Corneal Confocal Microscopy Study. Cornea. 2020;39(10):1221–1226. doi: 10.1097/ICO.0000000000002396

34. Martinez-Lapiscina EH, Arnow S, Wilson JA, Saidha S, Preiningerova JL, Oberwahrenbrock T et al.; IMSVISUAL consortium. Retinal thickness measured with optical coherence tomography and risk of disability worsening in multiple sclerosis: a cohort study. Lancet Neurol. 2016;15(6):574–84. doi: 10.1016/S1474-4422(16)00068-5

35. Vidal-Jordana A, Pareto D, Cabello S, Alberich M, Rio J, Tintore M et al. Optical coherence tomography measures correlate with brain and spinal cord atrophy and multiple sclerosis disease-related disability. Eur J Neurol. 2020;27(11):2225–2232. doi: 10.1111/ene.14421

36. Cerdá-Fuertes N, Stoessel M, Mickeliunas G, Pless S, Cagol A, Barakovic M et al. Optical coherence tomography versus other biomarkers: Associations with physical and cognitive disability in multiple sclerosis. Mult Scler. 2023;29(13):1540–1550. doi: 10.1177/13524585231198760

37. Birkeldh U, Manouchehrinia A, Hietala MA, Hillert J, Olsson T, Piehl F et al. The Temporal Retinal Nerve Fiber Layer Thickness Is the Most Important Optical Coherence Tomography Estimate in Multiple Sclerosis. Front Neurol. 2017;8:675. doi: 10.3389/fneur.2017.00675

38. Dreyer-Alster S., Aviva G., Achiron A. Optical Coherence Tomography Is Associated with Cognitive Impairment in Multiple Sclerosis. Journal of Neuro-Ophthalmology. 2022; 42(1):e14–e21. DOI: 10.1097/WNO.0000000000001326

39. Jankowska-Lech I, Wasyluk J, Palasik W, Terelak-Borys B, Grabska-Liberek I. Peripapillary retinal nerve fi ber layer thickness measured by optical coherence tomography in different clinical subtypes of multiple sclerosis. Mult Scler Relat Disord. 2019;27:260–268. doi: 10.1016/j.msard.2018.11.003

40. Andrusyakova E.P., Iojleva E.E., Kalinchenko S.YU., Safonenko A.YU., Krivosheeva M.S. Optical coherence tomography — angiography in optic nerve atrophy due to multiple sclerosis. Saratov Medical Scientific Journal = Saratovskij nauchno-medicinskij zhurnal. 2020;2:559–563. (In Russ.). URL: https://cyberleninka.ru/article/n/opticheskaya-kogerentnaya-tomografiya-angiografiya-pri-atrofii-zritelnogo-nerva-na-fone-rasseyannogo-skleroza

41. Pietroboni AM, Dell’Arti L, Caprioli M, Scarioni M, Carandini T, Arighi A et al. The loss of macular ganglion cells begins from the early stages of disease and correlates with brain atrophy in multiple sclerosis patients. Mult Scler. 2019;25(1):31–38. doi: 10.1177/1352458517740214

42. Petracca M., Cordano C., Cellerino M., Button J., Krieger S., Vancea R. et al. Retinal degeneration in primary-progressive multiple sclerosis: A role for cortical lesions? Multiple Sclerosis Journal. 2017;23(1):43–50. doi: 10.1177/1352458516637679

43. Kuhle J., Kropshofer H., Haering D.A., Kundu U., Meinert R., Barro C. et al. Blood Neurofi lament Light Chain as a Biomarker of MS Disease Activity and Treatment Response. Neurology. 2019;92:e1007–e1015. doi: 10.1212/WNL.0000000000007032

44. Bsteh G., Berek K., Hegen H., Teuchner B., Buchmann A., Voortman M. M., Berger T. Serum neurofilament levels correlate with retinal nerve fi ber layer thinning in multiple sclerosis. Multiple Sclerosis Journal. 2020;26(13):1682–1690. doi: 10.1177/1352458519882279

45. Tavazzi E, Jakimovski D, Kuhle J, Hagemeier J, Ozel O, Ramanathan M et al. Serum neurofilament light chain and optical coherence tomography measures in MS: A longitudinal study. Neurol Neuroimmunol Neuroinfl amm. 2020;7(4):e737. doi: 10.1212/NXI.0000000000000737

46. Williams T, Zetterberg H, Chataway J. Neurofi laments in progressive multiple sclerosis : a systematic review. J Neurol. 2021;268(9):3212–3222. doi: 10.1007/s00415-020-09917-x

47. Ayrignac X, Le Bars E, Dufl os C, Hirtz C, Maleska Maceski A, Carra-Dallière C et al. Serum GFAP in multiple sclerosis: correlation with disease type and MRI markers of disease severity. Sci Rep. 2020;10(1):10923. doi: 10.1038/s41598-020-67934-2

48. Maier S, Barcutean L, Andone S, Manu D, Sarmasan E, Bajko Z, Balasa R. Recent Progress in the Identifi cation of Early Transition Biomarkers from Relapsing-Remitting to Progressive Multiple Sclerosis. Int J Mol Sci. 2023;24(5):4375. doi: 10.3390/ijms24054375

49. Uzunköprü C, Yüceyar N, Yilmaz SG, Afrashi F, Ekmekçi Ö, Taşkiran D. Retinal Nerve Fiber Layer Thickness Correlates with Serum and Cerebrospinal Fluid Neurofi lament Levels and is Associated with Current Disability in Multiple Sclerosis. Noro Psikiyatr Ars. 2021;58(1):34–40. doi: 10.29399/npa.27355

50. Andrusyakova E.P., Ioyleva E.E., Safonenko A.Yu., Khabazova M.R., Seregina T.V. Optical coherence tomography — angiography in patients with multiple sclerosis. Bashkortostan Medical Journal = Medicinskij vestnik Bashkortostana. 2020;15(4):92–95. (In Russ.). URL: https://cyberleninka.ru/article/n/opticheskaya-kogerentnaya-tomografiya-angiografiya-pri-rasseyannom-skleroze

51. Murphy OC, Kwakyi O, Iftikhar M, Zafar S, Lambe J, Pellegrini N et al. Alterations in the retinal vasculature occur in multiple sclerosis and exhibit novel correlations with disability and visual function measures. Mult Scler. 2020;26:815–828. doi: 10.1177/1352458519845116

52. Lanzillo R., Cennamo G., Criscuolo C., Carotenuto A., Velotti N., Sparnelli F., Brescia Morra V. Optical coherence tomography angiography retinal vascular network assessment in multiple sclerosis. Multiple Sclerosis Journal. 2018;24(13):1706–1714. doi: 10.1177/1352458517729463

53. Khader SA, Nawar AE, Ghali AA, Ghoneim AM. Evaluation of optical coherence tomography angiography findings in patients with multiple sclerosis. Indian J Ophthalmol. 2021;69(6):1457–1463. doi: 10.4103/ijo.IJO_2964_20

54. Yilmaz H, Ersoy A, Icel E. Assessments of vessel density and foveal avascular zone metrics in multiple sclerosis: an optical coherence tomography angiography study. Eye (Lond). 2020;34(4):771–778. doi: 10.1038/s41433-019-0746-y

55. Farci R, Carta A, Cocco E, Frau J, Fossarello M, Diaz G. Optical coherence tomography angiography in multiple sclerosis: A cross-sectional study. PLoS One. 2020;15(7):e0236090. doi: 10.1371/journal.pone.0236090

56. Wang X., Jia Y., Spain R., Potsaid B., Liu J.J., Baumann B. et al. Optical coherence tomography angiography of optic nerve head and parafovea in multiple sclerosis. Br J Ophthalmol. 2014;98(10):1368–73. doi: 10.1136/bjophthalmol-2013-304547

57. Montorio D., Lanzillo R., Carotenuto A., Petracca M., Moccia M., Criscuolo C. et al. Retinal and Choriocapillary Vascular Changes in Early Stages of Multiple Sclerosis: A Prospective Study. J. Clin. Med. 2021;10:5756. doi: 10.3390/jcm10245756

58. Rogaczewska M, Michalak S, Stopa M. Optical Coherence Tomography Angiography of Peripapillary Vessel Density in Multiple Sclerosis and Neuromyelitis Optica Spectrum Disorder: A Comparative Study. J Clin Med. 2021;10(4):609. doi: 10.3390/jcm10040609

59. Lin T.-Y., Chien C., Lu A., Paul F., Zimmermann H.G. Retinal optical coherence tomography and magnetic resonance imaging in neuromyelitis optica spectrum disorders and MOG-antibody associated disorders : An updated review. Expert Rev. Neurother. 2021;21:1101–1123. doi: 10.1080/14737175.2021.1982697

60. Kleerekooper I, Houston S, Dubis AM, Trip SA, Petzold A. Optical Coherence Tomography Angiography (OCTA) in Multiple Sclerosis and Neuromyelitis Optica Spectrum Disorder. Front Neurol. 2020;11:604049. doi: 10.3389/fneur.2020.604049

61. Spiess K, Martínez JRG. OCT Angiography: Assessment of Retinal Ischemia in Susac’s Syndrome. Ophthalmic Surg Lasers Imaging Retina. 2017;48(6):505–508. doi: 10.3928/23258160-20170601-10

62. Guerrieri S, Comi G, Leocani L. Optical Coherence Tomography and Visual Evoked Potentials as Prognostic and Monitoring Tools in Progressive Multiple Sclerosis. Front Neurosci. 2021;15:692599. doi: 10.3389/fnins.2021.692599

63. Lambe J, Murphy OC, Saidha S. Can Optical Coherence Tomography Be Used to Guide Treatment Decisions in Adult or Pediatric Multiple Sclerosis? Curr Treat Options Neurol. 2018;20(4):9. doi: 10.1007/s11940-018-0493-6

64. Button J, Al-Louzi O, Lang A, Bhargava P, Newsome SD, Frohman T et al. Disease-modifying therapies modulate retinal atrophy in multiple sclerosis: A retrospective study. Neurology. 2017;88(6):525–532. doi: 10.1212/WNL.0000000000003582

65. You Y, Barnett MH, Yiannikas C, Parratt JDE, Matthews JG, Graham SL, Klistorner A. Interferon-β Is Less Effective Than Other Drugs in Controlling the Rate of Retinal Ganglion Cell Loss in MS. Neurol Neuroimmunol Neuroinfl amm. 2021;8(3):e971. doi: 10.1212/NXI.0000000000000971


Review

For citations:


Shchukina T.V., Bisaga G.N., Malko V.A., Topuzova M.P., Tolochko K.A., Dadatsky A.Yu., Alekseeva T.M. Optical coherence retinal tomography as a prognostic biomarker of multiple sclerosis progression. Russian neurological journal. 2024;29(3):16-23. (In Russ.) https://doi.org/10.30629/2658-7947-2024-29-3-16-23

Views: 566


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2658-7947 (Print)
ISSN 2686-7192 (Online)