Preview

Russian neurological journal

Advanced search

Early cognitive dysfunction development immunological predictors in the ischemic stroke acute period

https://doi.org/10.30629/2658-7947-2024-29-2-24-33

Abstract

The purpose of the study is activity identification CXC family cytokines in patients with cognitive impairments in the acute period of ischemic stroke.

Material and methods. 78 patients with diagnosis “Ischemic stroke” were examined. Depending on cognitive impairment (Montreal Cognitive Assessment (MoCA)) patients were divided into two groups: the 1st group — 58 patients with cognitive decline (MoCA ≤ 25 points); the 2nd group — 20 patients without cognitive decline. Neuropsychologic testing was performed on the second day of hospitalisation and included episodic memory, executive function, speech, gnosis, praxis and IQCODE parameters examination. Laboratory diagnosis consisted of level assessing of CXC family chemokines (CXCL10, CXCL11, CXCL9, CXCL1, CXCL8) and TNF-α cytokine in patients’ plasma on the second day of hospitalisation. Statistical analysis was employed using the Python programing language and its libraries Pandas and SciPy.

Results. Statistical analysis revealed the highest level of IP-10/CXCL10 chemokines (p = 0.002) and Gro-a/CXCL1 (p = 0.044) in patients of the 1st group, statistically significant correlations of MoCA and IQCODE with IP-10/CXCL10 and Gro-a/CXCL1 concentrations, correlations of IP-10/CXCL10 concentrations with semantic information processing functions (r = –0.512), subject gnosis (r = –0.211), memory (r = 0.275), speech (r = –0.400), and Gro-a/ CXCL1 level with semantic information processing (r = –0.418).

Conclusion. The study of chemokines of the CXC cluster represents a relevant and promising direction in the diagnosis and assessment of progression of early post-stroke cognitive impairment of mixed genesis due to minimal invasiveness and high specificity. Further studies are needed to verify CXCL chemokines, particularly IP-10/CXCL10 and Gro-a/CXCL1 as potential molecular markers of neurological damage in neurodegenerative and inflammatory diseases of the central nervous system.

About the Author

A. M. Tynterova
Immanuel Kant Baltic Federal University
Russian Federation

Kaliningrad



References

1. Klochikhina O.., Shprach V.V., Stakhovskaya L.V., Polunina O.S, Polunina E.A. Dynamics of stroke morbidity and mortality over an eight-year period in the territories included in the Federal program for the reorganization of care for stroke patients. Acta Biomedica Scientifica. 2021;6(1):75–80. (In Russ.). doi: 10.29413/ABS.2021-6.1.10

2. Lim J.S, Lee J.J, Woo C.W. Post-Stroke Cognitive Impairment: Pathophysiological Insights into Brain Disconnectome from Advanced Neuroimaging Analysis Techniques. J Stroke. 2021;23(3):297–311. doi: 10.5853/jos.2021.02376

3. Gottesman R.F., Schneider A.L., Zhou Y., Coresh J., Green E., Gupta N. et al. Association Between Midlife Vascular Risk Factors and Estimated Brain Amyloid Deposition. JAMA. 2017;317(14):1443–1450. doi: 10.1001/jama.2017.3090

4. Román G.C., Tatemichi T.K., Erkinjuntti T., Cummings J.L., Masdeu J.C., Garcia J.H. et al. Vascular dementia: Diagnostic criteria for research studies. Report of the NINDS-AIREN International Workshop. Neurol. 1993;43(2):250–260. doi: 10.1212/wnl.43.2.250.

5. Tabeeva G.R. Mixed dementia: the role of cerebrovascular pathology. S.S. Korsakov Journal of Neurology and Psychiatry. 2018;118(9):111–116. (In Russ.). doi: 10.17116/jnevro2018118091111

6. Pinho J., Quintas-Neves M., Dogan I., Reetz K., Reich A., Costa A.S. Incident stroke in patients with Alzheimer’s disease: systematic review and meta-analysis. Sci Rep. 2021;11:16385. doi: 10.1038/s41598-021-95821-x

7. Loeffler D.A. Modifiable, Non-Modifiable, and Clinical Factors Associated with Progression of Alzheimer’s Disease. J Alzheimers Dis. 2021;80(1):1–27. doi: 10.3233/JAD-201182.

8. Bykova A.Yu., Kulesh A.A., Kayleva N.A., Kuklina E.M., Shestakov V.V. Interrelation of the dynamics of serum concentrations of interleukin-1β, interleukin-6 and interleukin-10 with clinical data in acute ischemic stroke and the strategy of reperfusion therapy. Bulletin of Siberian Medicine. 2019;18(4):16–25. (In Russ.). doi: 10.20538/1682-0363-2019-4-16–25

9. Prilutskaya I.A., Kryuk Yu.Ya. Levels of tumor necrosis factor alpha in patients with ischemic stroke. Medical Immunology (Russia). 2019;21(4):755–764. (In Russ.). doi: 10.15789/1563-0625-2019-4-755-764

10. Hughes C.E, Nibbs R.J.B. A guide to chemokines and their receptors. FEBS J. 2018;285(16):2944–2971. doi: 10.1111/febs.14466.

11. Zhou F., Sun Y., Xie X., Zhao Y. Blood and CSF chemokines in Alzheimer’s disease and mild cognitive impairment: a systematic review and meta-analysis. Alzheimers Res Ther. 2023;15(1):107. doi: 10.1186/s13195-023-01254-1

12. Tang E.Y.H., Price C.I., Robinson L., Exley C., Desmond D.W., Köhler S. et al. Assessing the Predictive Validity of Simple Dementia Risk Models in Harmonized Stroke Cohorts. Stroke. 202051(7):2095–2102. doi: 10.1161/STROKEAHA.120.027473

13. Parfenov V.A. Poststroke cognitive impairment. Neurology, Neuropsychiatry, Psychosomatics. 2019;11(4):22–27. (In Russ.). doi: 0.14412/2074-2711-2019-4-22-27

14. Desai RH, Reilly M, van Dam W. The multifaceted abstract brain. Philos Trans R Soc Lond B Biol Sci. 2018;373(1752):20170122. doi: 10.1098/rstb.2017.0122

15. Weaver N.A., Kuijf H.J., Aben H.P., Abrigo J., Bae H.J., Barbay M. et al. Strategic infarct locations for post-stroke cognitive impairment: a pooled analysis of individual patient data from 12 acute ischaemic stroke cohorts. Lancet Neurol. 2021;20(6):448–459. doi: 10.1016/S1474-4422(21)00060-0

16. Cole R.H., Clark C.N., Poole N.A. Semantic dementia: a complex and culturally influenced presentation. BJPsych Bull. 2023Jan 31:1–7. doi: 10.1192/bjb.2022.100

17. Vasenina EE, Levin OS. Speech disorders in neurodegenerative diseases as dysphasia manifestation. S.S. Korsakov Journal of Neurology and Psychiatry. 2020;120(5):50–59. (In Russ.). doi: 10.17116/jnevro202012005150

18. Tikhomirov G.V, Grigoryeva V.N. Visual object agnosia for complex shapes in patients with acute ischemic stroke. Practical Medicine. 2019;17 (7):107–110. (In Russ.). doi: 10.32000/2072-1757-2019-7-107-110

19. Rost N.S., Brodtmann A., Pase M.P., van Veluw S.J., Biffi A., Duering M. et al. Post-Stroke Cognitive Impairment and Dementia. Circ Res. 2022;130(8):1252–1271. doi: 10.1161/CIRCRESAHA.122.319951

20. Doyle K.P., Buckwalter M.S. Immunological mechanisms in poststroke dementia. Curr Opin Neurol. 2020;33(1):30–36. doi: 10.1097/WCO.0000000000000783

21. Berchiche Y.A., Sakmar T.P. CXC Chemokine Receptor 3 Alternative Splice Variants Selectively Activate Different Signaling Pathways. Mol Pharmacol. 2016;90(4):483–95. doi: 10.1124/mol.116.105502

22. Phares T.W., Stohlman S.A., Hinton D.R., Bergmann C.C. Astrocyte-derived CXCL10 drives accumulation of antibody-secreting cells in the central nervous system during viral encephalomyelitis. J Virol. 2013;87(6):3382–92. doi: 10.1128/JVI.03307-12

23. Liu C.Y., Yang Y., Ju W.N., Wang X., Zhang H.L. Emerging Roles of Astrocytes in Neuro-Vascular Unit and the Tripartite Synapse With Emphasis on Reactive Gliosis in the Context of Alzheimer’s Disease. Front Cell Neurosci. 2018;12:193. doi: 10.3389/fncel.2018.00193

24. Amin M., Vakilian A., Mahmoodi M.H., Hassanshahi G., Falahati-Pour S.K., Dolatabadi M.R., Nadimi A.E. Circulatory Levels of C-X-C Motif Chemokine Ligands 1, 9, and 10 Are Elevated in Patients with Ischemic Stroke. Eurasian J Med. 2017;49(2):92–96. doi: 10.5152/eurasianjmed.2017.17022

25. Wojcieszak J., Kuczyńska K., Zawilska J.B. Role of Chemokines in the Development and Progression of Alzheimer’s Disease. J Mol Neurosci. 2022;72(9):1929–1951. doi: 10.1007/s12031-022-02047-1

26. Gill D., Sivakumaran P., Wilding P., Love M., Veltkamp R., KarA. Trends in C-reactive protein levels are associated with neurological change twenty-four hours after thrombolysis for acute ischemic stroke. J. Stroke Cerebrovasc. Dis. 2016;25(8):1966–1999. doi: 10.1016/J.JSTROKECEREBROVASDIS.2016.05.003

27. Boro M., Balaji K.N. CXCL1 and CXCL2 Regulate NLRP3 Inflammasome Activation via G-Protein-Coupled Receptor CXCR2. J Immunol. 2017;199(5):1660–1671. doi: 10.4049/jimmunol.1700129

28. Huang F., Lan Y., Qin L., Dong H., Shi H., Wu H. et al. Astragaloside IV Promotes Adult Neurogenesis in Hippocampal Dentate Gyrus of Mouse through CXCL1/CXCR2 Signaling. Molecules. 2018;23(9):2178. doi: 10.3390/molecules23092178

29. Korbecki J., Gąssowska-Dobrowolska M., Wójcik J., Szatkowska I., Barczak K., Chlubek M., Baranowska-Bosiacka I. The Importance of CXCL1 in Physiology and Noncancerous Diseases of Bone, Bone Marrow, Muscle and the Nervous System. Int J Mol Sci. 2022;23(8):4205. doi: 10.3390/ijms23084205

30. Sanchez E., Wilkinson T., Coughlan G., Mirza S., Baril A.A., Ramirez J. et al. Association of plasma biomarkers with cognition, cognitive decline, and daily function across and within neurodegenerative diseases: Results from the Ontario Neurodegenerative Disease Research Initiative. Alzheimers Dement. 2023 Dec 17. doi: 10.1002/alz.13560. Epub ahead of print. PMID:38105605.


Review

For citations:


Tynterova A.M. Early cognitive dysfunction development immunological predictors in the ischemic stroke acute period. Russian neurological journal. 2024;29(2):24-33. (In Russ.) https://doi.org/10.30629/2658-7947-2024-29-2-24-33

Views: 378


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2658-7947 (Print)
ISSN 2686-7192 (Online)