Изучение возможностей лечения болезни Альцгеймера: текущий статус и перспективы на будущее
https://doi.org/10.30629/2658-7947-2023-28-6-19-33
Аннотация
Болезнь Альцгеймера (БА) — это прогрессирующее неврологическое заболевание, которое вызывает нарушения памяти и другие когнитивные расстройства у пожилых людей. Существует широкий спектр нарушений, включая таупатии, которые отвечают за прогрессирующий нейрональный дегенеративный процесс. При том что исследователи, занимающиеся поиском лекарств, и фармацевтические компании активно работают над разработкой новых препаратов для лечения БА, установление доказательств их безопасности и эффективности вызывает значительные сложности. В обзоре обсуждается патогенез БА с фокусом внимания на молекулярных мишенях, их физиологическом и патофизиологическом значении, терапевтических подходах и их перспективах. Представлена информация о новых многообещающих мишенях для лекарственного воздействия и ведущих базах данных, которые могут помочь выбрать подходящие мишени и разработать новые молекулы для лечения БА.
Об авторах
К. РатхиИндия
Пимпри, Пуна
Р. Вавхале
Индия
Пимпри, Пуна
В. Ундале
Индия
Пимпри, Пуна
Р. Бхоле
Индия
Пимпри, Пуна
С. Деранге
Индия
Пимпри, Пуна
Список литературы
1. Haque R.U., Levey A.I. Alzheimer’s disease: A clinical perspective and future nonhuman primate research opportunities. Proceedings of the National Academy of Sciences. 2019;116(52):26224–9.
2. Mendiola-Precoma J., Berumen L.C., Padilla K., Garcia-Alcocer G. Therapies for prevention and treatment of Alzheimer’s disease. BioMed research international. 2016;2016:2589276. doi: 10.1155/2016/2589276
3. Kumar A., Singh A. A review on Alzheimer’s disease pathophysiology and its management: an update. Pharmacological reports. 2015;67(2):195–203.
4. Silva M.V., Loures C.D., Alves L.C., de Souza L.C., Borges K.B., Carvalho M.D. Alzheimer’s disease: risk factors and potentially protective measures. Journal of biomedical science. 2019;26(1):1–1.
5. Yiannopoulou K.G., Papageorgiou S.G. Current and future treatments for Alzheimer’s disease. Therapeutic advances in neurological disorders. 2013;6(1):19–33.
6. DeTure M.A., Dickson D.W. The neuropathological diagnosis of Alzheimer’s disease. Molecular neurodegeneration. 2019;14(1):1–8.
7. Thakur A.K., Kamboj P., Goswami K., Ahuja K. Pathophysiology and management of Alzheimer’s disease: An overview. J. Anal. Pharm. Res. 2018;7(1).
8. Tiwari S., Atluri V., Kaushik A., Yndart A., Nair M. Alzheimer’s disease: pathogenesis, diagnostics, and therapeutics. International journal of nanomedicine. 2019;14:5541.
9. Fan L., Mao C., Hu X., Zhang S., Yang Z., Hu Z. et al. New insights into the pathogenesis of Alzheimer’s disease. Frontiers in neurology. 2020;10:1312. doi: 10.3389/fneur.2019.01312
10. Rasool M., Malik A., Qureshi M.S., Manan A., Pushparaj P.N., Asif M. et al. Recent updates in the treatment of neurodegenerative disorders using natural compounds. Evidence-Based Complementary and Alternative Medicine. 2014;2014:979730. doi: 10.1155/2014/979730
11. Corbett A., Pickett J., Burns A., Corcoran J., Dunnett S.B., Edison P. et al. Drug repositioning for Alzheimer’s disease. Nature Reviews Drug Discovery. 2012;11(11):833–46.
12. Kumar N., Gahlawat A., Kumar R.N., Singh Y.P., Modi G., Garg P. Drug repurposing for Alzheimer’s disease: in silico and in vitro investigation of FDA-approved drugs as acetylcholinesterase inhibitors. Journal of Biomolecular Structure and Dynamics. 2020:1–5. doi:10.1080/07391102.2020.1844054
13. Agatonovic-Kustrin S., Kettle C., Morton D.W. A molecular approach in drug development for Alzheimer’s disease. Biomedicine & Pharmacotherapy. 2018;106:553–65.
14. Goedert M., Spillantini M.G. A century of Alzheimer’s disease. Science. 2006;314(5800):777–81.
15. Crous-Bou M., Minguillón C., Gramunt N., Molinuevo J.L. Alzheimer’s disease prevention: from risk factors to early intervention. Alzheimer’s research & therapy. 2017;9(1):1–9.
16. Mendiola-Precoma J., Berumen L.C., Padilla K., Garcia-Alcocer G. Therapies for prevention and treatment of Alzheimer’s disease. BioMed research international. 2016;(3):1–17. DOI: 10.1155/2016/2589276
17. Mehta M., Adem A., Sabbagh M. New acetylcholinesterase inhibitors for Alzheimer’s disease. International Journal of Alzheimer’s disease. 2012;2012:728983. doi: 10.1155/2012/728983
18. Kumar A., Nisha C.M., Silakari C., Sharma I., Anusha K., Gupta N. et al. Current and novel therapeutic molecules and targets in Alzheimer’s disease. Journal of the Formosan Medical Association. 2016;115(1):3–10.
19. Sharma K. Cholinesterase inhibitors as Alzheimer’s therapeutics. Molecular medicine reports. 2019;20(2):1479–87.
20. Talesa V.N. Acetylcholinesterase in Alzheimer’s disease. Mechanisms of ageing and development. 2001;122(16):1961–9.
21. Pepeu G., Giovannini M.G. Cholinesterase inhibitors and beyond. Current Alzheimer Research. 2009;6(2):86–96.
22. Doraiswamy P.M. The role of the N-methyl-D-aspartate receptor in Alzheimer’s disease: therapeutic potential. Current neurology and neuroscience reports. 2003;3(5):373–8.
23. Kocahan S., Doğan Z. Mechanisms of Alzheimer’s disease pathogenesis and prevention: the brain, neural pathology, N-methyl-D-aspartate receptors, tau protein and other risk factors. Clinical Psychopharmacology and Neuroscience. 2017;15(1):1.
24. Malinow R. New developments on the role of NMDA receptors in Alzheimer’s disease. Current opinion in neurobiology. 2012;22(3):559–63.
25. Doraiswamy P.M. The role of the N-methyl-D-aspartate receptor in Alzheimer’s disease: therapeutic potential. Current neurology and neuroscience reports. 2003;3(5):373–8.
26. Olivares D., Deshpande V., Shi Y., Lahiri D., Greig N., Rogers J., Huang X. N-methyl D-aspartate (NMDA) receptor antagonists and memantine treatment for Alzheimer’s disease, vascular dementia and Parkinson’s disease. Current Alzheimer Research. 2012;9(6):746–58.
27. Kumar A., Nisha C.M., Silakari C., Sharma I., Anusha K., Gupta N. et al. Current and novel therapeutic molecules and targets in Alzheimer’s disease. Journal of the Formosan Medical Association. 2016;115(1):3–10.
28. Geerts H., Grossberg G.T. Pharmacology of acetylcholinesterase inhibitors and N‐methyl‐D‐aspartate receptors for combination therapy in the treatment of Alzheimer’s disease. The Journal of Clinical Pharmacology. 2006;46(S1):8S–16S.
29. Muralidar S., Ambi S.V., Sekaran S., Thirumalai D., Palaniappan B. Role of tau protein in Alzheimer’s disease: The prime pathological player. International journal of biological macromolecules. 2020;163:1599–617.
30. Johnson G.V., Hartigan J.A. Tau protein in normal and Alzheimer’s disease brain: an update. Journal of Alzheimer’s disease. 1999;1(4–5):329–51.
31. Pluta R., Ułamek-Kozioł M. Tau protein-targeted therapies in Alzheimer’s disease: current state and future perspectives. Exon Publications. 2020;Dec 19:69–82.
32. Bulic B., Pickhardt M., Mandelkow E.M., Mandelkow E. Tau protein and tau aggregation inhibitors. Neuropharmacology. 2010;59(4–5):276–89.
33. Thomas T. Monoamine oxidase-B inhibitors in the treatment of Alzheimers disease. Neurobiology of aging. 2000;21(2):343–8.
34. Riederer P., Danielczyk W., Grünblatt E. Monoamine oxidase-B inhibition in Alzheimer’s disease. Neurotoxicology. 2004;25(1–2):271–7.
35. Mi Z., Gan B., Yu S., Guo J., Zhang C., Jiang X. et al. Dual-target anti-Alzheimer’s disease agents with both iron ion chelating and monoamine oxidase-B inhibitory activity. Journal of enzyme inhibition and medicinal chemistry. 2019;34(1):1489–97.
36. Youdim M.B., Fridkin M., Zheng H. Bifunctional drug derivatives of MAO-B inhibitor rasagiline and iron chelator VK-28 as a more effective approach to treatment of brain ageing and ageing neurodegenerative diseases. Mechanisms of ageing and development. 2005;126(2):317–26.
37. Mi Z., Gan B., Yu S., Guo J., Zhang C., Jiang X. et al. Dual-target anti-Alzheimer’s disease agents with both iron ion chelating and monoamine oxidase-B inhibitory activity. Journal of enzyme inhibition and medicinal chemistry. 2019;34(1):1489–97.
38. Borroni E., Bohrmann B., Grueninger F., Prinssen E., Nave S., Loetscher H. et al. Sembragiline: a novel, selective monoamine oxidase type B inhibitor for the treatment of Alzheimer’s disease. Journal of Pharmacology and Experimental Therapeutics. 2017;362(3):413–23.
39. Yamada M., Yasuhara H. Clinical pharmacology of MAO inhibitors: safety and future. Neurotoxicology. 2004;25(1–2):215–21.
40. Tariot P.N., Sunderland T., Weingartner H., Murphy D.L., Welkowitz J.A., Thompson K., Cohen R.M. Cognitive effects of L-deprenyl in Alzheimer’s disease. Psychopharmacology. 1987;91(4):489–95.
41. Mangoni A., Grassi M.P., Frattola L., Piolti R., Bassi S., Motta A. et al. Effects of a MAO-B inhibitor in the treatment of Alzheimer disease. European neurology. 1991;31(2):100–7.
42. Kavully F.S., Oh J.M., Dev S., Kaipakasseri S., Palakkathondi A., Vengamthodi A. et al. Design of enamides as new selective monoamine oxidase-B inhibitors. Journal of Pharmacy and Pharmacology. 2020;72(7):916–26.
43. Kumar M.J., Andersen J.K. Perspectives on MAO-B in aging and neurological disease. Molecular neurobiology. 2004;30(1):77–89.
44. Li Q., Yang H., Chen Y., Sun H. Recent progress in the identification of selective butyrylcholinesterase inhibitors for Alzheimer’s disease. European journal of medicinal chemistry. 2017;132:294–309.
45. Nordberg A., Ballard C., Bullock R., Darreh-Shori T., Somogyi M. A review of butyrylcholinesterase as a therapeutic target in the treatment of Alzheimer’s disease. The primary care companion for CNS disorders. 2013;15(2):26731.
46. Pohanka M. Inhibitors of acetylcholinesterase and butyrylcholinesterase meet immunity. International journal of molecular sciences. 2014;15(6):9809–25.
47. Bhounsule A.S., Bhatt L.K., Prabhavalkar K.S., Oza M. Cyclin dependent kinase 5: A novel avenue for Alzheimer’s disease. Brain research bulletin. 2017;132:28–38.
48. Wei F.Y., Tomizawa K. Cyclin-dependent kinase 5 (Cdk5): a potential therapeutic target for the treatment of neurodegenerative diseases and diabetes mellitus. Mini Reviews in Medicinal Chemistry. 2007;7(10):1070–4.
49. Liu S.L., Wang C., Jiang T., Tan L., Xing A., Yu J.T. The role of Cdk5 in Alzheimer’s disease. Molecular neurobiology. 2016;53(7):4328–42.
50. Das B., Yan R. Role of BACE1 in Alzheimer’s synaptic function. Translational Neurodegeneration. 2017;6(1):1–8.
51. Moussa C.E. Beta-secretase inhibitors in phase I and phase II clinical trials for Alzheimer’s disease. Expert opinion on investigational drugs. 2017;26(10):1131–6.
52. Macalino S.J., Gosu V., Hong S., Choi S. Role of computer-aided drug design in modern drug discovery. Archives of Pharmacal research. 2015;38(9):1686–701.
53. Mavromoustakos T., Durdagi S., Koukoulitsa C., Simcic M., Papadopoulos M.G., Hodoscek M., Golic Grdadolnik S. Strategies in the rational drug design. Current medicinal chemistry. 2011;18(17):2517–30.
54. Kumar N., Gahlawat A., Kumar R.N., Singh Y.P., Modi G., Garg P. Drug repurposing for Alzheimer’s disease: in silico and in vitro investigation of FDA-approved drugs as acetylcholinesterase inhibitors. Journal of Biomolecular Structure and Dynamics. 2022;40(7):2878–2892. doi: 10.1080/07391102.2020.1844054
55. Bauzon J., Lee G., Cummings J. Repurposed agents in the Alzheimer’s disease drug development pipeline. Alzheimer’s research & therapy. 2020;12(1):98. doi: 10.1186/s13195-020-00662-x
56. Ihara M., Saito S. Drug repositioning for Alzheimer’s disease: finding hidden clues in old drugs. Journal of Alzheimer’s Disease. 2020;74(4):1013–28. doi: 10.3233/JAD-200049
57. Mayr L.M., Bojanic D. Novel trends in high-throughput screening. Current opinion in pharmacology. 2009;9(5):580–8. doi: 10.1016/j.coph.2009.08.004
58. Padhi, D., Govindaraju, T. Mechanistic Insights for Drug Repurposing and the Design of Hybrid Drugs for Alzheimer ’s disease. Journal of Medicinal Chemistry. 2022;65(10):7088–7105. doi: 10.1021/acs.jmedchem.2c00335
59. Mao L., Jin H., Wang M., Hu Y., Chen S., He Q. et al. Neurologic manifestations of hospitalized patients with coronavirus disease 2019 in Wuhan, China. JAMA Neurol. 2020;77(6):683–690. doi: 10.1001/jamaneurol.2020.1127
Рецензия
Для цитирования:
Ратхи К., Вавхале Р., Ундале В., Бхоле Р., Деранге С. Изучение возможностей лечения болезни Альцгеймера: текущий статус и перспективы на будущее. Российский неврологический журнал. 2023;28(6):19-33. https://doi.org/10.30629/2658-7947-2023-28-6-19-33
For citation:
Rathi K., Wavhale R., Undale V. V., Bhole R., Dherange S. Exploring avenues for Alzheimer’s drugs: current status and future outlook. Russian neurological journal. 2023;28(6):19-33. https://doi.org/10.30629/2658-7947-2023-28-6-19-33