Preview

Российский неврологический журнал

Расширенный поиск
Доступ открыт Открытый доступ  Доступ закрыт Только для подписчиков

Метаболом головного мозга

https://doi.org/10.30629/2658-7947-2020-25-1-4-12

Полный текст:

Аннотация

Метаболом представляет собой полный набор малых молекул в организме: пептиды, липиды, аминокислоты, нуклеиновые кислоты, углеводы, биогенные амины, витамины, минералы, а также любые химические соединения, с которыми человек контактирует, включая пищевые добавки, лекарства, косметические средства, токсины. Метаболомика — это комплексное изучение всех метаболитов, присутствующих в биологической системе. Эта наука стала реальностью благодаря развитию двух современных технологических платформ: масс-спектрометрии по уникальному для каждого метаболита соотношению массы и заряда, позволяющей идентифицировать тысячи соединений в одном образце, и спектроскопии ядерного магнитного резонанса, дающей возможность определять метаболиты в спектральных массивах посредством сдвига их сигнала относительно эталонного сигнала.

В обзоре даны понятия метаболомики и метаболома, представлены методы исследования и интерпретации данных, рассмотрены основные применения метаболомики в области диагностики заболеваний ЦНС, поиска прогностических маркеров и новых терапевтических мишеней, описан метаболический состав спинномозговой жидкости в норме и его изменения при патологии.

Об авторах

Н. В. Дрягина
РНХИ им. проф. А.Л. Поленова — филиал ФГБУ НМИЦ им. В.А. Алмазова
Россия

Дрягина Наталья Владимировна — заведующая клинико-диагностической лаборатории с экспресс-группой, старший научный сотрудник группы по изучению «малого сознания», кандидат медицинских наук.

Санкт-Петербург



Е. А. Кондратьева
РНХИ им. проф. А.Л. Поленова — филиал ФГБУ НМИЦ им. В.А. Алмазова
Россия

Санкт-Петербург



Я. А. Дубровский
ФГБУ НМИЦ им. В.А. Алмазова
Россия

Санкт-Петербург



А. Н. Кондратьев
РНХИ им. проф. А.Л. Поленова — филиал ФГБУ НМИЦ им. В.А. Алмазова
Россия

Санкт-Петербург



Список литературы

1. Dunn W., Broadhurst D., Atherton H., Goodacre R., Griffin J. Systems level studies of mammalian metabolomes: The roles of mass spectrometry and nuclear magnetic resonance spectroscopy. Chem. Soc. Rev. 2011;40:387-426.

2. Claudino W.M. Metabolomics: Available Results, Current Research Projects in Breast Cancer, and Future Applications. J. Clin. Oncol. 2007;25(19):2840-2846.

3. Wolahan S.M., Hirt D., Glenn T.C. Translational Metabolomics of Head Injury in: Kobeissy F.H. Brain Neurotrauma: Molecular, neuropsychological and rehabilitation aspects. Editor. Boca Raton: CrC Press/Taylor & Francis; 2015. Chapter 25. 725 p.

4. Трифонова О.П., Лохов П.Г, Арчаков А.И. Метаболом-ное профилирование крови. Биомедицинская химия. 2014;60(3):281-294. [Trifonova O.P., Lohov P.G., Archakov A.I. Metabolic profiling of human blood. Biomedicinskaja himija. 2014;60(3):281-294. (In Russian)].

5. Holmes E., Wilson I., Nicholson J. Metabolic phenotyping in health and disease. Cell. 2008;134:714-717.

6. Zhang A., Sun H., Wang P, Han Y, Wang X. Recent and potential developments of biofluid analyses in metabolomics. J. Pro-teomics. 2012;75(4):1079-88. doi: 10.1016/j.jprot.2011.10.027.

7. Johnson C.H., Gonzalez F.J. Challenges and opportunities of metabolomics. J. Cell Physiol. 2012;227(8):2975-2981. doi: 10.1002/jcp.24002.

8. Черноносов А.А. Красноречивые метаболиты. Наука из первых рук. 2010;2(32):91-94. [Chernonosov A.A. Eloquent metabolites. Nauka izpervyh ruk. 2010;2(32):91-94. (In Russian)].

9. Dettmer K., Aronov P., Hammock B. Mass spectrometry-based metabolomics. Mass Spectrom. Rev. 2007;26:51-78.

10. Spratlin J.L., Serkova N.J., Eckhardt S.G. Clinical applications of metabolomics in oncology: a review. Clin. Cancer Res. 2009;15(2):431-440. doi: 10.1158/1078-0432.CCR-08-1059.

11. Wishart D.S., Lewis M.J., Morrissey J.A., Flegel M.D., Jeron-cic K., Xiong Y. et al. The human cerebrospinal fluid metabo-lome. J. Chromatogr. B. 2008;871(2):164-173.

12. Gallart-Ayala H., Konz I., Mehl F., Teav T., Oikonomidi A. Pey-ratout G. et. al. A global HILIC-MS approach to measure polar human cerebrospinal fluid metabolome: Exploring gender-associated variation in a cohort of elderly cognitively healthy subjects. Analytica Chimica Acta. 2018;1037:327-337. doi: 10.1016/j.aca.2018.04.002.

13. Patti G.J., Yanes O., Siuzdak G. Metabolomics: the apogee of the omics trilogy. Nat. Rev. Mol. Cell Biol. 2012;13:263-269.

14. Baker M. Metabolomics: From small molecules to big ideas. Nat. Methods. 2011;8:117-121.

15. Vinaixa M., Schymanski E.L., Neumann S., Navarro M., Salek R.M., Yanes O. Mass spectral databases for LC/MS- and GC/MS-based metabolomics: state of the field and future prospects. Trends in Analytical Chemistry. 2016;78:23-35. https://doi.org/10.1016/j.trac.2015.09.005.

16. Wishart D.S., Feunang YD., Marcu A., Guo А.C., Liang K., Vazquez-Fresno R. et al. HMDB 4.0: the human metabolome database for 2018. Nucleic Acids Res. 2018;46(Database issue):D608-D617. doi: 10.1093/nar/gkx108.

17. Locasale J.W., Melman T., Song S., Yang X., Swanson K.D., Cantley L.C. et al. Metabolomics of human cerebrospinal fluid identifies signatures of malignant glioma. Mol. Cell Proteomics. 2012;11(6):M111.014688. doi: 10.1074/mcp.M111.014688.

18. Kennedy A.D., Pappan K.L., Donti T.R., Evans A.M., Wulff J.E., Miller L.A.D. et. al. Elucidation of the complex metabolic profile of cerebrospinal fluid using an untargeted biochemical profiling assay. Mol. Genet. Metab. 2017;121(2):83-90. doi: 10.1016/j.ymgme.2017.04.005.

19. Stoop M.P., Coulier L., Rosenling T., Shi S., Smolinska A.M., Buydens L.M.C. et al. Quantitative proteomics and metabo-lomics analysis of normal human cerebrospinal fluid samples. Mol. Cell Proteomics. 2010;9:2063-2075. doi: 10.1074/mcp.M900877-MCP200.

20. Crews B., Wikoff W.R., Patti G.J., Woo H.K., Kalisiak E., Heideker J. et al. Variability analysis of human plasma and cerebral spinal fluid reveals statistical significance of changes in mass spectrometry-based metabolomics data. Anal. Chem. 2009;81(20):8538-8544. doi: 10.1021/ac9014947.

21. Willkommen D., Lucio M., Moritz F., Forcisi S., Kanawati B., Smirnov K. et al. Metabolomic investigations in cerebrospinal fluid of Parkinson’s disease. PLoS One. 2018;13(12):e0208752. doi: 10.1371/journal.pone.0208752.

22. LeWitt P.A., Li J., Lu M., Guo L., Auinger P. Metabolomic biomarkers as strong correlates of Parkinson disease progression. Neurology. 2017;88(9):862-869. doi: 10.1212/WNL.0000000000003663.

23. Havelund J.F., Heegaard N.H.H., F®rgeman N.J.K., Gramsber-gen J.B. Biomarker Research in Parkinson’s Disease Using Metabolite Profiling. Metabolites. 2017;7(3):pii: E42. doi: 10.3390/metabo7030042.

24. Trezzi J.P, Galozzi S., Jaeger C., Barkovits K., Brockmann K., Maetzler W. et al. Distinct metabolomic signature in cerebrospinal fluid in early Parkinson’s disease. Mov. Disord. 2017;32(10):1401-1408. doi: 10.1002/mds.27132.

25. Trupp M., Jonsson P, Ohrfelt A., Zetterberg H., Obudulu O., Malm L. et al. Metabolite and peptide levels in plasma and CSF differentiating healthy controls from patients with newly diagnosed Parkinson’s disease. J. Parkinsons Dis. 2014;4(3):549-560. doi: 10.3233/JPD-140389.

26. LeWitt P. Recent advances in CSF biomarkers for Parkinson’s disease. Parkinsonism Relat. Disord. 2012;18Suppl.1:S49-51. doi: 10.1016/S1353-8020(11)70017-7.

27. Stefani A., Pierantozzi M., Olivola E., Galati S., Cerroni R., D’Angelo V et al. Homovanillic acid in CSF of mild stage Parkinson’s disease patients correlates with motor impairment. Neu-rochem. Int. 2017;105:58-63. doi: 10.1016/j.neuint.2017.01.007.

28. Jove M., Portero-Otin M., Naudi A., Ferrer I., Pamplona R.J. Me-tabolomics of human brain aging and age-related neurodegenerative diseases. Neuropathol. Exp. Neurol. 2014;73(7):640-657. doi: 10.1097/NEN.0000000000000091.

29. He R., Yan X., Guo J., Xu Q., Tang B., Sun Q. Recent Advances in Biomarkers for Parkinson’s Disease. Front Aging. Neurosci. 2018;10:305. doi: 10.3389/fnagi.2018.00305.

30. Ascherio A., LeWitt P.A., Xu K., Eberly S., Watts A. Urate as a predictor of the rate of clinical decline in Parkinson disease. Arch. Neurol. 2009;66(12):1460-1468. doi: 10.1001/archneu-rol.2009.247.

31. Kang J., Lu J., Zhang X. Metabolomics-based promising candidate biomarkers and pathways in Alzheimer’s disease. Pharma-zie. 2015;70:277-282. doi: 10.1691/ph.2015.4859.

32. Han X., Rozen S., Boyle S.H., Hellegers C., Cheng H., Burke J.R. et al. Metabolomics in early Alzheimer’s disease: identification of altered plasma sphingolipidome using shotgun lipidomics. PLoS One. 2011;6(7):e21643. doi: 10.1371/journal.pone.0021643.

33. Whiley L., Sen A., Heaton J., Proitsi P, Garcia-Gomez D., Leung R. et al. Evidence of altered phosphatidylcholine metabolism in Alzheimer’s disease. Neurobiol. Aging. 2014;35(2):271-278. doi: 10.1016/j.neurobiolaging.2013.08.001.

34. Varma V.R., Oommen A.M., Varma S., Casanova R., An Y., Andrews R.M. et al. Brain and blood metabolite signatures of pathology and progression in Alzheimer disease: A targeted metab-olomics study. PLoS Med. 2018;15(1):e1002482. doi: 10.1371/journal.pmed.1002482.

35. Oresic M., Hyotylainen T., Herukka S.K., Sysi-Aho M., Mat-tila I., Seppanan-Laakso T. et al. Metabolome in progression to Alzheimer’s disease. Transl. Psychiatry. 2011;1:e57. doi: 10.1038/tp.2011.55.

36. Toledo J.B., Arnold M., Kastenmuller G., Chang R., Baillie R.A. Han X. et al. Metabolic network failures in Alzheimer’s disease: A biochemical road map. Alzheimers Dement. 2017;13(9):965-984. doi: 10.1016/j.jalz.2017.01.020.

37. Wilkins J.M., Trushina E. Application of Metabolomics in Alzheimer’s Disease. Front Neurol. 2017;8:719. doi: 10.3389/fneur.2017.00719.

38. Trushina E., Dutta T., Persson X.M., Mielke M.M., Petersen R.C. Identification of altered metabolic pathways in plasma and CSF in mild cognitive impairment and Alzheimer’s disease using metabolomics. PLoS One. 2013;8(5):e63644. doi: 10.1371/journal.pone.0063644.

39. Kaddurah-Daouk R., Rozen S., Matson W., Han X., Hulette C.M. et al. Metabolomic changes in autopsy-confirmed Alzheimer’s disease. Alzheimers Dement. 2011;7(3):309—317. doi: 10.1016/j.jalz.2010.06.001.

40. Ibanez C., Simo C., Martm-Alvarez P.J., Kivipelto M., Win-blad B. et al. Toward a predictive model of Alzheimer’s disease progression using capillary electrophoresis-mass spectrometry metabolomics. Anal. Chem. 2012;84(20):8532-8240. doi: 10.1021/ac301243k.

41. Kim H.H., Jeong I.H., Hyun J.S., Kong B.S., Kim H.J., Park S.J. Metabolomic profiling of CSF in multiple sclerosis and neuromyelitis optica spectrum disorder by nuclear magnetic resonance. PLoS One. 2017;12(7):e0181758. doi: 10.1371/journal.pone.0181758.

42. Cocco E., Murgia F., Lorefice L., Barberini L., Poddighe S. et al. 1H-NMR analysis provides a metabolomic profile of patients with multiple sclerosis. Neurol. Neuroimmunol. Neuroinflamm. 2015;3(1):e185. doi: 10.1212/NXI.0000000000000185.

43. Moussallieh F.M., Elbayed K., Chanson J.B., Rudolf G., Piot-to M. et al. Serum analysis by 1H nuclear magnetic resonance spectroscopy: a new tool for distinguishing neuromyelitis optica from multiple sclerosis. Mult. Scler. 2014;20(5):558-565. doi: 10.1177/1352458513504638.

44. Lynch J., Peeling J., Auty A., Sutherland G.R. Nuclear magnetic resonance study of cerebrospinal fluid from patients with multiple sclerosis. Can. J. Neurol. Sci. 1993;20(3):194-198.

45. Reinke S.N., Broadhurst D.L., Sykes B.D., Baker G.B., Catz I. et al. Metabolomic profiling in multiple sclerosis: insights into biomarkers and pathogenesis. Mult. Scler. 2014;20(10):1396-1400. doi: 10.1177/1352458513516528.

46. Tavazzi B., Batocchi A.P., Amorini A.M., Nociti V, D’Urso S. et al. Serum metabolic profile in multiple sclerosis patients. Mult. Scler. Int. 2011;2011:167156. doi: 10.1155/2011/1671560.

47. Pieragostino D., D’Alessandro M., di Ioia M., Rossi C., Zucchel-li M. et al. An integrated metabolomics approach for the research of new cerebrospinal fluid biomarkers of multiple sclerosis. Mol. Biosyst. 2015;11(6):1563-1572. doi: 10.1039/c4mb00700j.

48. Andersen S.L., Briggs F.B.S., Winnike J.H., Natanzon Y, Maich-le S. et al. Metabolome-based signature of disease pathology in MS. Mult. Scler. Relat. Disord. 2019;31:12-21. doi: 10.1016/j.msard.2019.03.006.

49. Dickens A.M., Larkin J.R., Griffin J.L., Cavey A., Matthews L. et al. A type 2 biomarker separates relapsing-remitting from secondary progressive multiple sclerosis. Neurology. 2014;83(17): 1492-1499. doi: 10.1212/WNL.0000000000000905.

50. Simone I.L., Federico F., Trojano M., Tortorella C., Liguo-ri M. et al. High resolution proton MR spectroscopy of cerebrospinal fluid in MS patients. Comparison with biochemical changes in demyelinating plaques. J. Neurol. Sci. 1996;144(1-2):182-190.

51. Bahado-Singh R.O., Graham S.F., Han B., Turkoglu O., Ziadeh J. et al. Identification of candidate biomarkers of brain damage in a mouse model of closed head injury: a metabolomic pilot study. Metabolomics. 2016;12:42. doi: 10.1007/s11306-016-0957-1.

52. Zheng F., Xia Z.A., Zeng Y.F., Luo J.K., Sun P., Cui H.J. et al. Plasma metabolomics profiles in rats with acute traumatic brain injury. PLoS One. 2017;12(8):e0182025. doi: 10.1371/journal.pone.0182025.

53. Posti J.P., Dickens A.M, Oresic M., Hyotylainen T., Tenovuo O. Metabolomics Profiling As a Diagnostic Tool in Severe Traumatic Brain Injury. Front. Neurol. 2017;8:398. doi: 10.3389/fneur.2017.00398.

54. Oresic M., Posti J.P., Kamstrup-Nielsen M.H. et al. Human Serum Metabolites Associate With Severity and Patient Outcomes in Traumatic Brain Injury. EBioMedicine. 2016;12:118-126. doi: 10.1016/j.ebiom.2016.07.015.

55. Servia L., Jove M., Sol J., Pamplona R., Badia M. et al. A prospective pilot study using metabolomics discloses specific fatty acid, catecholamine and tryptophan metabolic pathways as possible predictors for a negative outcome after severe trauma. Scand. J. Trauma Resusc. Emerg. Med. 2019;27:56. doi: 10.1186/s13049-019-0631-5.

56. Glenn T.C., Hirt D., Mendez G., McArthur D.L., Sturtevant R., Wolahan S. et al. Metabolomic analysis of cerebral spinal fluid from patients with severe brain injury. Acta Neurochir. Suppl. 2013;118:115-119. https://doi.org/10.1007/978-3-7091-1434-6_20.

57. Yi L., Shi S., Wang Y, Huang W., Xia Z. et al. Serum Metabolic Profiling Reveals Altered Metabolic Pathways in Patients with Post-traumatic Cognitive Impairments. Sci. Rep. 2016;6:21320. doi: 10.1038/srep21320.

58. Pandey R. Metabolomic signature of brain cancer. Mol. Car-cinog. 2017;56(11):2355-2371. doi: 10.1002/mc.22694.

59. Ahmed K.A., Chinnaiyan P. Applying metabolomics to understand the aggressive phenotype and identify novel therapeutic targets in glioblastoma. Metabolites. 2014;4(3):740-750. doi: 10.3390/metabo4030740.

60. Erb G., Elbayed K., Piotto M., Raya J., Neuville A. et al. Toward improved grading of malignancy in oligodendrogliomas using metabolomics. Magn. Reson. Med. 2008;59(5):959-965. doi: 10.1002/mrm.21486.

61. Wright A.J., Fellows G.A., Griffiths J.R., Wilson M., Bell B.A. et al. Ex-vivo HRMAS of adult brain tumours: metabolite quantification and assignment of tumour biomarkers. Mol. Cancer. 2010;23(9):66. doi: 10.1186/1476-4598-9-66.

62. Chen W., Lou H., Zhang H., Nie X., Lan W. et al. Grade classification of neuroepithelial tumors using high-resolution magic-angle spinning proton nuclear magnetic resonance spectroscopy and pattern recognition. Sci. China Life Sci. 2011;54(7):606-116. doi: 10.1007/s11427-011-4193-7.

63. Constantin A., Elkhaled A., Jalbert L., Srinivasan R., Cha S. et al. Identifying malignant transformations in recurrent low grade gliomas using high resolution magic angle spinning spectroscopy. Artif. Intell. Med. 2012;55(1):61-70. doi: 10.1016/j.artmed.2012.01.002.

64. Vettukattil R., Gulati M., Sj0bakk T.E., Jakola A.S., Kvern-mo N.A. et al. Differentiating diffuse World Health Organization grade II and IV astrocytomas with ex vivo magnetic resonance spectroscopy. Neurosurgery. 2013;72(2):186-95. doi: 10.1227/NEU.0b013e31827b9c57.

65. Ballester L.Y, Lu G., Zorofchian S., Vantaku V, Putluri V. et al. Analysis of cerebrospinal fluid metabolites in patients with primary or metastatic central nervous system tumors. Acta Neu-ropathol. Commun. 2018;6(1):85. doi: 10.1186/s40478-018-0588-z.

66. Shao W., Gu J., Huang C., Liu D., Huang H. et al. Malignancy-associated metabolic profiling of human glioma cell lines using 1H NMR spectroscopy. Mol. Cancer. 2014;13:197. doi: 10.1186/1476-4598-13-197.

67. Nakamizo S., Sasayama T., Shinohara M., Irino Y., Nishiumi S. et al. GC/MS-based metabolomic analysis of cerebrospinal fluid (CSF) from glioma patients. J. Neurooncol. 2013;113(1):65-74. doi: 10.1007/s11060-013-1090-x.

68. Moren L., Bergenheim A.T., Ghasimi S., Brannstrom T., Johansson M. et al. Metabolomic Screening of Tumor Tissue and Serum in Glioma Patients Reveals Diagnostic and Prognostic Information. Metabolites. 2015;5(3):502-520. doi: 10.3390/metabo5030502.

69. Palanichamy K., Thirumoorthy K., Kanji S., Gordon N., Singh R. et al. Methionine and Kynurenine Activate Oncogenic Kinases in Glioblastoma, and Methionine Deprivation Compromises Proliferation. Clin. Cancer Res. 2016;22(14):3513-3523. doi: 10.1158/1078-0432.CCR-15-2308.

70. de Groot J., Sontheimer H. Glutamate and the biology of gliomas. Glia. 2011;59(8):1181-1189. doi: 10.1002/glia.21113.

71. Gordon S.M., Srinivasan L., Harris M.C. Neonatal Meningitis: Overcoming Challenges in Diagnosis, Prognosis, and Treatment with Omics. Front. Pediatr. 2017;5:139. doi: 10.3389/fped.2017.00139.

72. Li Z., Du B., Li J., Zhang J., Zheng X., Jia H. et al. Cerebrospinal fluid metabolomic profiling in tuberculous and viral meningitis: screening potential markers for differential diagnosis. Clin. Chim. Acta. 2017;466:38-45. doi: 10.1016/j.cca.2017.01.002.

73. Coen M., O’Sullivan M., Bubb W.A., Kuchel P.W., Sorrell T. Proton nuclear magnetic resonance-based metabonomics for rapid diagnosis of meningitis and ventriculitis. Clin. Infect. Dis. 2005;41(11):1582-1590.

74. Himmelreich U., Malik R., Kuhn T., Daniel H.M., Somorjai R.L. et al. Rapid etiological classification of meningitis by NMR spectroscopy based on metabolite profiles and host response. PLoS One. 2009;4(4):e5328. doi: 10.1371/journal.pone.0005328.

75. Subramanian A., Gupta A., Saxena S., Gupta A., Kumar R. et al. Proton MR CSF analysis and a new software as predictors for the differentiation of meningitis in children. NMR Biomed. 2005;18(4):213-225.

76. Glickman M.S., Cox J.S., Jacobs W.R. A novel mycolic acid cyclopropane synthetase is required for cording, persistence, and virulence of Mycobacterium tuberculosis. Mol. Cell. 2000;5(4):717-727.

77. French C.D., Willoughby R.E., Pan A., Wong S.J., Foley J.F. et al. NMR metabolomics of cerebrospinal fluid differentiates inflammatory diseases of the central nervous system. PLoS Negl. Trop. Dis. 2018;12(12):e0007045. doi: 10.1371/journal.pntd.0007045.

78. Шишкина Е.С., Мухачева М.В., Окулова И.И. Нейрокогнитивные расстройства при ВИЧ-энцефалопатии. Вят. мед. вестн. 2018;2:14-17. [Shishkina E.S., Muhacheva M.V, Oku-lova 1.1. Neuro-cognitive disorders in HIV-encephalopathy. Vjat. Med. Vestn. 2018;2:14-17. (In Russian)].

79. Anderson A.M., Harezlak J., Bharti A., Mi D., Taylor M.J. et al. Plasma and Cerebrospinal Fluid Biomarkers Predict Cerebral Injury in HIV-Infected Individuals on Stable Combination Antiretroviral Therapy. J. Acquir. Immune Defic. Syndr. 2015;69(1):29-35. doi: 10.1097/QAI.0000000000000532.

80. Dickens A.M., Anthony D.C., Deutsch R., Mielke M.M., Claridge T.D. et al. Cerebrospinal fluid metabolomics implicate bioenergetic adaptation as a neural mechanism regulating shifts in cognitive states of HIV-infected patients. AIDS. 2015;29(5):559-569. doi: 10.1097/QAD.0000000000000580.

81. Cassol E., Misra V, Dutta A., Morgello S., Gabuzda D. Cerebrospinal fluid metabolomics reveals altered waste clearance and accelerated aging in HIV patients with neurocognitive impairment. AIDS. 2014;28(11):1579-1591. doi: 10.1097/QAD.0000000000000303.

82. Munshi S.U., Rewari B.B., Bhavesh N.S., Jameel S. Nuclear magnetic resonance based profiling of biofluids reveals metabolic dysregulation in HIV-infected persons and those on antiretroviral therapy. PLoS One. 2013;8(5):e64298. doi: 10.1371/journal.pone.0064298.


Для цитирования:


Дрягина Н.В., Кондратьева Е.А., Дубровский Я.А., Кондратьев А.Н. Метаболом головного мозга. Российский неврологический журнал. 2020;25(1):4-12. https://doi.org/10.30629/2658-7947-2020-25-1-4-12

For citation:


Dryagina N.V., Kondratyeva E.A., Dubrovskii Y.A., Kondratyev A.N. Metabolome of the Brain. Russian neurological journal. 2020;25(1):4-12. (In Russ.) https://doi.org/10.30629/2658-7947-2020-25-1-4-12

Просмотров: 212


ISSN 2658-7947 (Print)
ISSN 2686-7192 (Online)