

Миастения гравис: особенности эпидемиологии, патогенеза, лечения и взаимосвязь с тимомами
https://doi.org/10.30629/2658-7947-2023-28-2-5-14
Аннотация
Проведена систематизация последних научных данных по патогенезу, генетическим особенностям, методам лечения миастении, а также взаимосвязи между миастенией и другими заболеваниями. Для поиска опубликованных исследований использовались следующие базы данных: Pubmed, Web of Science, EBSCOhost и Scopus. Поиск производился во временном интервале с даты создания соответствующей базы данных до октября 2022 года. Использовались поисковые термины «myasthenia gravis», «myasthenia treatment», «myasthenia epidemiological features», «“myasthenia and thymoma” myasthenia pathogenesis». Обозначены основные исследования, касающиеся эпидемиологии миастении, приведены ключевые клинические формы и их патогенетические характеристики, связь миастении с тимомой, основные методы лечения.
Ключевые слова
Об авторах
А. И. ГарифуллинРоссия
Гарифуллин Айрат Ильдарович
Москва
Э. И. Султанова
Россия
Уфа
И. В. Асфандиярова
Россия
Уфа
А. Б. Хусаинова
Россия
Уфа
М. Э. Гордеева
Россия
Уфа
А. Р. Шакирова
Россия
Уфа
А. А. Корнеева
Россия
Уфа
А. Ф. Тукаев
Россия
Уфа
Д. Н. Ефремова
Россия
Уфа
А. С. Синицина
Россия
Уфа
Е. О. Собянина
Россия
Уфа
А. Р. Усманова
Россия
Уфа
Э. И. Исханова
Россия
Уфа
Список литературы
1. Dresser L, Wlodarski R, Rezania K, Soliven B. Myasthenia Gravis: Epidemiology, Pathophysiology and Clinical Manifestations. J Clin Med. 2021;10(11):2235. https://doi.org/10.3390/jcm10112235
2. Conti-Fine BM, Milani M, Kaminski HJ. Myasthenia gravis: past, present, and future. J Clin Invest. 2006;116(11):2843–2854. https://doi.org/10.1172/JCI29894
3. Avidan N, Le Panse R, Berrih-Aknin S, Miller A. Genetic basis of myasthenia gravis — a comprehensive review. J Autoimmun. 2014;52:146–153. https://doi.org/10.1016/j.jaut.2013.12.001
4. Bubuioc AM, Kudebayeva A, Turuspekova S, Lisnic V, Leone MA. The epidemiology of myasthenia gravis. J Med Life. 2021;14(1):7–16. https://doi.org/10.25122/jml-2020-0145
5. Berrih-Aknin S, Frenkian-Cuvelier M, Eymard B. Diagnostic and clinical classifi cation of autoimmune myasthenia gravis. J Autoimmun. 2014;48–49:143–148. https://doi.org/10.1016/j.jaut.2014.01.003
6. Cleanthous S, Mork AC, Regnault A, Cano S, Kaminski HJ, Morel T. Development of the Myasthenia Gravis (MG) Symptoms PRO: a case study of a patient-centred outcome measure in rare disease. Orphanet J Rare Dis. 2021;16(1):457. https://doi.org/10.1186/s13023-021-02064-0
7. Isbister CM, Mackenzie PJ, Anderson D, Wade NK, Oger J. Co-occurrence of multiple sclerosis and myasthenia gravis in British Columbia. Mult Scler. 2003;9(6):550–553. https://doi.org/10.1191/1352458503ms964oa
8. Deymeer F. History of Myasthenia Gravis Revisited. Noro Psikiyatr Ars. 2020;58(2):154–162. https://doi.org/10.29399/npa.27315
9. Grob D, Brunner N, Namba T, Pagala M. Lifetime course of myasthenia gravis. Muscle Nerve. 2008;37(2):141–149. https://doi.org/10.1002/mus.20950
10. Hehir MK, Silvestri NJ. Generalized Myasthenia Gravis: Classifi cation, Clinical Presentation, Natural History, and Epidemiology. Neurol Clin. 2018;36(2):253–260. https://doi.org/10.1016/j.ncl.2018.01.002
11. Carr AS, Cardwell CR, McCarron PO, McConville J. A systematic review of population based epidemiological studies in Myasthenia Gravis. BMC Neurol. 2010;10:46. https://doi.org/10.1186/1471-2377-10-46
12. Santos E, Coutinho E, Moreira I, Silva AM, Lopes D, Costa H et al. Epidemiology of myasthenia gravis in Northern Portugal: Frequency estimates and clinical epidemiological distribution of cases. Muscle Nerve. 2016;54(3):413–421. https://doi.org/10.1002/mus.25068
13. Хатхе ЮА, Заболотских НВ, Терпелец СА. Эпидемиологические и популяционные аспекты миастении в Краснодарском крае. Нервно-мышечные болезни. 2018;8(1):28–33. https://doi.org/10.17650/2222-8721-2018-8-1-28-33
14. Ишмухаметова АТ, Мусин РГ, Хидиятова ИМ, Магжанов РВ. Эпидемиологическое исследование миастении гравис в Республике Башкортостан. Неврологический журнал. 2006;11(6):16–21. URL: https://www.elibrary.ru/item.asp?id=9313415
15. Романова ТВ. Эпидемиологическое исследование миастении гравис в Самарской области. Саратовский научно-медицинский журнал. 2012;8(1):091–095. URL: https://ssmj.ru/2012/1/091
16. Заславский ЛГ, Хуршилов АБ. Основные клинико-эпидемиологические показатели миастении в Ленинградской области. Ученые записки Санкт-Петербургского государственного медицинского университета имени академика И.П. Павлова. 2015;22(4):40–43. https://doi.org/10.24884/1607-4181-2015-22-4-40-43
17. Koneczny I, Herbst R. Myasthenia Gravis: Pathogenic Effects of Autoantibodies on Neuromuscular Architecture. Cells. 2019;8(7):671. https://doi.org/10.3390/cells8070671
18. Uzawa A, Kuwabara S, Suzuki S, Imai T, Murai H, Ozawa Y et al. Roles of cytokines and T cells in the pathogenesis of myasthenia gravis. Clin Exp Immunol. 2021;203(3):366–374. https://doi.org/10.1111/cei.13546
19. Lee JY, Stathopoulos P, Gupta S, Bannock JM, Barohn RJ, Cotzomi E et al. Compromised fi delity of B-cell tolerance checkpoints in AChR and MuSK myasthenia gravis. Ann Clin Transl Neurol. 2016;3(6):443–454. https://doi.org/10.1002/acn3.311
20. Vander Heiden JA, Stathopoulos P, Zhou JQ, Chen L, Gilbert TJ, Bolen CR et al. Dysregulation of B Cell Repertoire Formation in Myasthenia Gravis Patients Revealed through Deep Sequencing. J Immunol. 2017;198(4):1460–1473. https://doi.org/10.4049/jimmunol.1601415
21. Takaba H, Takayanagi H. The Mechanisms of T Cell Selection in the Thymus. Trends Immunol. 2017;38(11):805–816. https://doi.org/10.1016/j.it.2017.07.010
22. Poëa-Guyon S, Christadoss P, Le Panse R, Guyon T, De Baets M, Wakkach A et al. Eff ects of cytokines on acetylcholine receptor expression: implications for myasthenia gravis. J Immunol. 2005;174(10):5941–5949. https://doi.org/10.4049/jimmunol.174.10.5941
23. Dragin N, Bismuth J, Cizeron-Clairac G, Biferi MG, Berthault C, Serraf A et al. Estrogen-mediated downregulation of AIRE influences sexual dimorphism in autoimmune diseases. J Clin Invest. 2016;126(4):1525–1537. https://doi.org/10.1172/JCI81894
24. Truffault F, de Montpreville V, Eymard B, Sharshar T, Le Panse R, Berrih-Aknin S. Thymic Germinal Centers and Corticosteroids in Myasthenia Gravis: an Immunopathological Study in 1035 Cases and a Critical Review. Clin Rev Allergy Immunol. 2017;52(1):108–124. https://doi.org/10.1007/s12016-016-8558-3
25. Vrolix K, Fraussen J, Losen M, Stevens J, Lazaridis K, Molenaar PC et al. Clonal heterogeneity of thymic B cells from earlyonset myasthenia gravis patients with antibodies against the acetylcholine receptor. J Autoimmun. 2014;52:101–112. https://doi.org/10.1016/j.jaut.2013.12.008
26. Vinuesa CG, Linterman MA, Yu D, MacLennan IC. Follicular Helper T Cells. Annu Rev Immunol. 2016;34:335–368. https://doi.org/10.1146/annurev-immunol-041015-055605
27. Gradolatto A, Nazzal D, Truff ault F, Bismuth J, Fadel E, Foti M, Berrih-Aknin S. Both Treg cells and Tconv cells are defective in the Myasthenia gravis thymus: roles of IL-17 and TNF-α. J Autoimmun. 2014;52:53–63. https://doi.org/10.1016/j.jaut.2013.12.015
28. Albuquerque EX, Pereira EF, Alkondon M, Rogers SW. Mammalian nicotinic acetylcholine receptors: from structure to function. Physiol Rev. 2009;89(1):73–120. https://doi.org/10.1152/physrev.00015.2008
29. Tzartos SJ, Barkas T, Cung MT, Mamalaki A, Marraud M, Orlewski P et al. Anatomy of the antigenic structure of a large membrane autoantigen, the muscle-type nicotinic acetylcholine receptor. Immunol Rev. 1998;163:89–120. https://doi.org/10.1111/j.1600-065x.1998.tb01190.x
30. Kordas G, Lagoumintzis G, Sideris S, Poulas K, Tzartos SJ. Direct proof of the in vivo pathogenic role of the AChR autoantibodies from myasthenia gravis patients [published correction appears in PLoS One. 2015;10(1):e0117673] [published correction appears in PLoS One. 2015;10(3):e0120947]. PLoS One. 2014;9(9):e108327. Published 2014 Sep 26. https://doi.org/10.1371/journal.pone.0108327
31. Fostieri E, Beeson D, Tzartos SJ. The conformation of the main immunogenic region on the alpha-subunit of muscle acetylcholine receptor is affected by neighboring receptor subunits. FEBS Lett. 2000;481(2):127–130. https://doi.org/10.1016/s0014-5793(00)01980-3
32. Morgan BP, Chamberlain-Banoub J, Neal JW, Song W, Mizuno M, Harris CL. The membrane attack pathway of complement drives pathology in passively induced experimental autoimmune myasthenia gravis in mice. Clin Exp Immunol. 2006;146(2):294–302. https://doi.org/10.1111/j.1365-2249.2006.03205.x
33. Rødgaard A, Nielsen FC, Djurup R, Somnier F, Gammeltoft S. Acetylcholine receptor antibody in myasthenia gravis: predominance of IgG subclasses 1 and 3. Clin Exp Immunol. 1987;67(1):82–88. URL: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1542559/
34. Morgan BP, Chamberlain-Banoub J, Neal JW, Song W, Mizuno M, Harris CL. The membrane attack pathway of complement drives pathology in passively induced experimental autoimmune myasthenia gravis in mice. Clin Exp Immunol. 2006;146(2):294–302. https://doi.org/10.1111/j.1365-2249.2006.03205.x
35. Kim N, Stiegler AL, Cameron TO, Hallock PT, Gomez AM, Huang JH, et al. Lrp4 is a receptor for Agrin and forms a complex with MuSK. Cell. 2008;135(2):334–342. https://doi.org/10.1016/j.cell.2008.10.002
36. Guptill JT, Sanders DB, Evoli A. Anti-MuSK antibody myasthenia gravis: clinical findings and response to treatment in two large cohorts. Muscle Nerve. 2011;44(1):36–40. https://doi.org/10.1002/mus.22006
37. Cole RN, Reddel SW, Gervásio OL, Phillips WD. Anti-MuSK patient antibodies disrupt the mouse neuromuscular junction. Ann Neurol. 2008;63(6):782–789. https://doi.org/10.1002/ana.21371
38. Niks EH, van Leeuwen Y, Leite MI, Dekker FW, Wintzen AR, Wirtz PW et al. Clinical fl uctuations in MuSK myasthenia gravis are related to antigen-specific IgG4 instead of IgG1. J Neuroimmunol. 2008;195(1–2):151–156. https://doi.org/10.1016/j.jneuroim.2008.01.013
39. Poulas K, Koutsouraki E, Kordas G, Kokla A, Tzartos SJ. Anti- MuSK- and anti-AChR-positive myasthenia gravis induced by d-penicillamine. J Neuroimmunol. 2012;250(1–2):94–98. https://doi.org/10.1016/j.jneuroim.2012.05.011
40. Gilhus NE, Verschuuren JJ. Myasthenia gravis: subgroup classifi cation and therapeutic strategies. Lancet Neurol. 2015;14(10):1023–1036. https://doi.org/10.1016/S1474-4422(15)00145-3
41. Cortés-Vicente E, Gallardo E, Martínez MÁ, Díaz-Manera J, Querol L, Rojas-García R, Illa I. Clinical Characteristics of Patients With Double-Seronegative Myasthenia Gravis and Antibodies to Cortactin. JAMA Neurol. 2016;73(9):1099–1104. https://doi.org/10.1001/jamaneurol.2016.2032
42. Higuchi O, Hamuro J, Motomura M, Yamanashi Y. Autoantibodies to low-density lipoprotein receptor-related protein 4 in myasthenia gravis. Ann Neurol. 2011;69(2):418–422. https://doi.org/10.1002/ana.22312
43. Rivner MH, Quarles BM, Pan JX, Yu Z, Howard JF Jr, Corse A et al. Clinical features of LRP4/agrin-antibody-positive myasthenia gravis: A multicenter study. Muscle Nerve. 2020;62(3):333–343. https://doi.org/10.1002/mus.26985
44. Zhang B, Tzartos JS, Belimezi M, Ragheb S, Bealmear B, Lewis RA et al. Autoantibodies to lipoprotein-related protein 4 in patients with double-seronegative myasthenia gravis. Arch Neurol. 2012;69(4):445–451. https://doi.org/10.1001/archneurol.2011.2393
45. Zagoriti Z, Kambouris ME, Patrinos GP, Tzartos SJ, Poulas K. Recent advances in genetic predisposition of myasthenia gravis. Biomed Res Int. 2013;2013:404053. https://doi.org/10.1155/2013/404053
46. Pirskanen R. Genetic aspects in myasthenia gravis. A family study of 264 Finnish patients. Acta Neurol Scand. 1977;56(5):365–388 URL: https://pubmed.ncbi.nlm.nih.gov/596124/
47. Renton AE, Pliner HA, Provenzano C, Evoli A, Ricciardi R, Nalls MA et al. A genome-wide association study of myasthenia gravis. JAMA Neurol. 2015;72(4):396–404. https://doi.org/10.1001/jamaneurol.2014.4103
48. Carlsson B, Wallin J, Pirskanen R, Matell G, Smith CI. Diff erent HLA DR-DQ associations in subgroups of idiopathic myasthenia gravis. Immunogenetics. 1990;31(5–6):285–290. https://doi.org/10.1007/BF02115001
49. Horton R, Gibson R, Coggill P, Miretti M, Allcock RJ, Almeida J et al. Variation analysis and gene annotation of eight MHC haplotypes: the MHC Haplotype Project. Immunogenetics. 2008;60(1):1–18. https://doi.org/10.1007/s00251-007-0262-2
50. From the American Association of Neurological Surgeons (AANS), American Society of Neuroradiology (ASNR), Cardiovascular and Interventional Radiology Society of Europe (CIRSE), Canadian Interventional Radiology Association (CIRA), Congress of Neurological Surgeons (CNS), European Society of Minimally Invasive Neurological Therapy (ESMINT), European Society of Neuroradiology (ESNR), European Stroke Organization (ESO), Society for Cardiovascular Angiography and Interventions (SCAI), Society of Interventional Radiology (SIR), Society of NeuroInterventional Surgery (SNIS), and World Stroke Organization (WSO), Sacks D, Baxter B, Campbell BCV, Carpenter JS, Cognard C, Dippel D, et al. Multisociety Consensus Quality Improvement Revised Consensus Statement for Endovascular Therapy of Acute Ischemic Stroke. Int J Stroke. 2018;13(6):612–632. https://doi.org/10.1177/1747493018778713
51. Fernández-Mestre MT, Vargas V, Montagnani S, Cotúa M, Ogando V, Layrisse Z. HLA class II and class I polymorphism in Venezuelan patients with myasthenia gravis. Hum Immunol. 2004;65(1):54–59. https://doi.org/10.1016/j.humimm.2003.10.003
52. Oosterhuis HJ. The natural course of myasthenia gravis: a long term follow up study. J Neurol Neurosurg Psychiatry. 1989;52(10):1121–1127. https://doi.org/10.1136/jnnp.52.10.1121
53. Hong YH, Kwon SB, Kim BJ, Kim BJ, Kim SH, Kim JK et al. Prognosis of ocular myasthenia in Korea: a retrospective multicenter analysis of 202 patients. J Neurol Sci. 2008;273(1–2):10–14. https://doi.org/10.1016/j.jns.2008.05.023
54. Hendricks TM, Bhatti MT, Hodge DO, Chen JJ. Incidence, Epidemiology, and Transformation of Ocular Myasthenia Gravis: A Population-Based Study [published correction appears in Am J Ophthalmol. 2020 Jul 3;]. Am J Ophthalmol. 2019;205:99–105. https://doi.org/10.1016/j.ajo.2019.04.01755. Gilhus NE. Myasthenia Gravis. N Engl J Med. 2016;375(26):2570–2581. https://doi.org/10.1056/NEJMra1602678
55. Sih M, Soliven B, Mathenia N, Jacobsen J, Rezania K. Headdrop: A frequent feature of late-onset myasthenia gravis. Muscle Nerve. 2017;56(3):441–444. https://doi.org/10.1002/mus.25526
56. Ciafaloni E. Myasthenia Gravis and Congenital Myasthenic Syndromes. Continuum (Minneap Minn). 2019;25(6):1767–1784. https://doi.org/10.1212/CON.0000000000000800
57. Grob D. Course and management of myasthenia gravis. J Am Med Assoc. 1953;153(6):529–532. https://doi.org/10.1001/jama.1953.02940230001001
58. Sanders DB, El-Salem K, Massey JM, McConville J, Vincent A. Clinical aspects of MuSK antibody positive seronegative MG. Neurology. 2003;60(12):1978–1980. https://doi.org/10.1212/01.wnl.0000065882.63904.53
59. Pasnoor M, Wolfe GI, Nations S, Trivedi J, Barohn RJ, Herbelin L et al. Clinical fi ndings in MuSK-antibody positive myasthenia gravis: a U.S. experience. Muscle Nerve. 2010;41(3):370–374. https://doi.org/10.1002/mus.21533
60. Rivner MH, Liu S, Quarles B, Fleenor B, Shen C, Pan J, Mei L. Agrin and low-density lipoprotein-related receptor protein 4 antibodies in amyotrophic lateral sclerosis patients. Muscle Nerve. 2017;55(3):430–432. https://doi.org/10.1002/mus.25438
61. Tzartos JS, Zisimopoulou P, Rentzos M, Karandreas N, Zouvelou V, Evangelakou P et al. LRP4 antibodies in serum and CSF from amyotrophic lateral sclerosis patients. Ann Clin Transl Neurol. 2014;1(2):80–87. https://doi.org/10.1002/acn3.26
62. Weksler B, Lu B. Alterations of the immune system in thymic malignancies. J Thorac Oncol. 2014;9(9Suppl2):S137–S142. https://doi.org/10.1097/JTO.0000000000000299
63. Punga AR, Maddison P, Heckmann JM, Guptill JT, Evoli A. Epidemiology, diagnostics, and biomarkers of autoimmune neuromuscular junction disorders. Lancet Neurol. 2022;21(2):176–188. https://doi.org/10.1016/S1474-4422(21)00297-0
64. Sanders DB, Wolfe GI, Benatar M, Evoli A, Gilhus NE, Illa I et al. International consensus guidance for management of myasthenia gravis: Executive summary. Neurology. 2016;87(4):419–425. https://doi.org/10.1212/WNL.0000000000002790
65. Detterbeck F, French CA, Hornick JL, Inagaki H, Jain D, Lazar AJ et al. The 2021 WHO Classifi cation of Tumors of the Thymus and Mediastinum: What Is New in Thymic Epithelial, Germ Cell, and Mesenchymal Tumors? J Thorac Oncol. 2022;17(2):200–213. https://doi.org/10.1016/j.jtho.2021.10.010
66. Lefeuvre CM, Payet CA, Fayet OM, Maillard S, Truff ault F, Bondet V et al. Risk factors associated with myasthenia gravis in thymoma patients: The potential role of thymic germinal centers. J Autoimmun. 2020;106:102337. https://doi.org/10.1016/j.jaut.2019.102337
67. Yamada Y, Yoshida S, Iwata T, Suzuki H, Tagawa T, Mizobuchi T et al. Risk factors for developing postthymectomy myasthenia gravis in thymoma patients. Ann Thorac Surg. 2015;99(3):1013–1019. https://doi.org/10.1016/j.athoracsur.2014.10.068
68. Narayanaswami P, Sanders DB, Wolfe G, Benatar M, Cea G, Evoli A et al. International Consensus Guidance for Management of Myasthenia Gravis: 2020 Update. Neurology. 2021;96(3):114–122. https://doi.org/10.1212/WNL.0000000000011124
69. Ye B, Tantai JC, Ge XX, Li W, Feng J, Cheng M et al. Surgical techniques for early-stage thymoma: video-assisted thoracoscopic thymectomy versus transsternal thymectomy. J Thorac Cardiovasc Surg. 2014;147(5):1599–1603. https://doi.org/10.1016/j.jtcvs.2013.10.053
70. Xi J, Wang L, Yan C, Song J, Song Y, Chen J et al. The Cancer Genome Atlas dataset-based analysis of aberrantly expressed genes by GeneAnalytics in thymoma associated myasthenia gravis: focusing on T cells. J Thorac Dis. 2019;11(6):2315–2323. https://doi.org/10.21037/jtd.2019.06.01
71. De Rosa A, Fornili M, Maestri Tassoni M, Guida M, Baglietto L, Petrucci L et al. Thymoma-associated myasthenia gravis: Clinical features and predictive value of antiacetylcholine receptor antibodies in the risk of recurrence of thymoma. Thorac Cancer. 2021;12(1):106–113. https://doi.org/10.1111/1759-7714.13724
72. Szczudlik P, Szyluk B, Lipowska M, Ryniewicz B, Kubiszewska J, Dutkiewicz M et al. Antititin antibody in early- and late-onset myasthenia gravis. Acta Neurol Scand. 2014;130(4):229–233. https://doi.org/10.1111/ane.12271
73. Buckley C, Newsom-Davis J, Willcox N, Vincent A. Do titin and cytokine antibodies in MG patients predict thymoma or thymoma recurrence? Neurology. 2001;57(9):1579–1582. https://doi.org/10.1212/wnl.57.9.1579
74. Gastaldi M, De Rosa A, Maestri M, Zardini E, Scaranzin S, Guida M et al. Acquired neuromyotonia in thymoma-associated myasthenia gravis: a clinical and serological study. Eur J Neurol. 2019;26(7):992–999. https://doi.org/10.1111/ene.13922
75. Masuda T, Motomura M, Utsugisawa K, Nagane Y, Nakata R, Tokuda M et al. Antibodies against the main immunogenic region of the acetylcholine receptor correlate with disease severity in myasthenia gravis. J Neurol Neurosurg Psychiatry. 2012;83(9):935–940. https://doi.org/10.1136/jnnp-2012-302705
76. Dalakas MC. Immunotherapy in myasthenia gravis in the era of biologics. Nat Rev Neurol. 2019;15(2):113–124. https://doi.org/10.1038/s41582-018-0110-z
77. Пикин ОВ, Рябов АБ, Щербакова НИ, Глушко ВА, Колбанов КИ, Бармин ВВ и др. Ретимэктомия у больных миастенией и рецидивом опухоли вилочковой железы. Хирургия. Журнал им. Н.И. Пирогова. 2021;9:27–33. https://doi.org/10.17116/hirurgia202109127
78. Шевченко ЮЛ, Ветшев ПС, Санадзе АГ, Аблицов АЮ, Сиднев ДВ, Дедаев СИ, Магомедов Б. Антитела к ацетилхолиновому рецептору в оценке эффективности тимэктомии у больных с генерализованной миастенией. Вестник Национального медико-хирургического центра им. Н.И. Пирогова. 2011;6(4):15–19.
79. Санадзе АГ. Критерии диагностики миастении. Болезни нервной системы: механизмы развития, диагностика и лечение. 2017:107–131.
80. Farmakidis C, Pasnoor M, Dimachkie MM, Barohn RJ. Treatment of Myasthenia Gravis. Neurol Clin. 2018;36(2):311–337. https://doi.org/10.1016/j.ncl.2018.01.011
81. Díaz-Manera J, Martínez-Hernández E, Querol L, Klooster R, Rojas- García R, Suárez-Calvet X et al. Long-lasting treatment eff ect of rituximab in MuSK myasthenia. Neurology. 2012;78(3):189–193. https://doi.org/10.1212/WNL.0b013e3182407982
82. Di Stefano V, Lupica A, Rispoli MG, Di Muzio A, Brighina F, Rodolico C. Rituximab in AChR subtype of myasthenia gravis: systematic review. J Neurol Neurosurg Psychiatry. 2020;91(4):392–395. https://doi.org/10.1136/jnnp-2019-322606
83. Hain B, Jordan K, Deschauer M, Zierz S. Successful treatment of MuSK antibody-positive myasthenia gravis with rituximab. Muscle Nerve. 2006;33(4):575–580. https://doi.org/10.1002/mus.20479
84. Щербакова НИ, Супонева НА, Шведков ВВ, Шабалина АА, Костырева МВ, Рудниченко ВА, Галкина ОИ. Российский опыт успешного применения ритуксимаба при рефрактерных формах миастении гравис. Нервно-мышечные болезни. 2015;5(3):50–61. https://doi.org/10.17650/2222-8721-2015-5-3-50-61
Рецензия
Для цитирования:
Гарифуллин А.И., Султанова Э.И., Асфандиярова И.В., Хусаинова А.Б., Гордеева М.Э., Шакирова А.Р., Корнеева А.А., Тукаев А.Ф., Ефремова Д.Н., Синицина А.С., Собянина Е.О., Усманова А.Р., Исханова Э.И. Миастения гравис: особенности эпидемиологии, патогенеза, лечения и взаимосвязь с тимомами. Российский неврологический журнал. 2023;28(2):5-14. https://doi.org/10.30629/2658-7947-2023-28-2-5-14
For citation:
Garifullin A.I., Sultanova E.I., Asfandiyarova I.V., Khusainova A.B., Gordeeva M.E., Shakirova A.R., Korneeva A.A., Tukaev A.F., Efremova D.N., Sinitsina A.S., Sobyanina E.O., Usmanova A.R., Ikhsanova E.I. Myastenia gravis: features of epidemiology, pathogenesis, treatment and relation to thymomas. Russian neurological journal. 2023;28(2):5-14. (In Russ.) https://doi.org/10.30629/2658-7947-2023-28-2-5-14