Preview

Russian neurological journal

Advanced search

HLA-DRB1 polymorphism and risk of pediatric-onset and adult-onset multiple sclerosis: a case–control study

https://doi.org/10.30629/2658-7947-2023-28-1-33-40

Abstract

The association of predisposition to multiple sclerosis (MS) with HLA-DRB1 gene polymorphisms is the strongest. It is not clear whether the DRB1 alleles associated with the risk of this disease diff er in adult and pediatric populations living in the same environmental conditions.

Objective: comparative study of associations of HLA-DRB1 gene polymorphism with the risk of pediatric-onset MS and adult-onset MS in the Altai region.

Material and methods. Caucasian with relapsing-remitting MS, born and living in the Altai region of Russia in the southeast of Western Siberia, participated in the case–control study: 200 patients with adult-onset MS, 86 patients with pediatric-onset MS. The control group included 200 volunteers. Genotyping was performed by TaqMan probes. Results. Alleles 03, 13, 15 of the HLA-DRB1 gene are genetic risk factors for both adult-onset MS and pediatric-onset MS in Caucasians in the Altai region. Alleles 01 and 07 of the HLA-DRB1 gene may have a protective eff ect against pediatric-onset MS, alleles 01, 07, 11 and 16 against adult-onset MS.

Conclusion. It can be assumed that the diff erence in the age of MS onset is not associated with the diff erent infl uence of risk alleles of the HLA-DRB1 gene in populations under and over 18 years of age.

About the Authors

E. Yu. Elchaninova
Altai State Medical University
Russian Federation

Barnaul



I. V. Smagina
Altai State Medical University
Russian Federation

Smagina Inna Vadimovna

Barnaul



A. I. Afanas’eva
Altai State Medical University
Russian Federation

Barnaul



S. A. Elchaninova
Altai State Medical University
Russian Federation

Barnaul



References

1. Shmidt T.E., Yakhno N.N. Multiple sclerosis. Moscow: MEDpress-inform; 2016. (In Russ.)].

2. Alroughani R., Boyko A. Pediatric multiple sclerosis: a review. BMC neurology. 2018;18(1):27. https://doi.org/10.1186/s12883-018-1026-3

3. Tyshkov C.D., Charvet L.E., Krupp L.B. Multiple Sclerosis in Children. In: Rizvi S., Cahill J., Coyle P. (eds). Clinical Neuroimmunology. Current Clinical Neurology. Humana, Cham. 2020:179–197. https://doi.org/10.1007/978-3-030-24436-1_9

4. Alroughani R., Akhtar S., Ahmed S.F., Behbehani R., Al-Abkal J., Al-Hashel J. Incidence and prevalence of pediatric onset multiple sclerosis in Kuwait: 1994–2013. Journal of the neurological sciences. 2015;353(1–2):107–110. https://doi.org/10.1016/j.jns.2015.04.025

5. Boyko A.N., Bykova O.V., Sivertseva S.A. Multiple sclerosis in children and adolescents: clinic, diagnosis, treatment. Moscow: MIA; 2016:448 p. (In Russ.)].

6. Yan K., Balijepalli C., Desai K., Gullapalli L., Druyts E. Epidemiology of pediatric multiple sclerosis: A systematic literature review and meta-analysis. Multiple sclerosis and related disorders. 2020;44:102260. https://doi.org/10.1016/j.msard.2020.102260

7. Jeong A., Oleske D.M., Holman J. Epidemiology of PediatricOnset Multiple Sclerosis: A Systematic Review of the Literature. Journal of child neurology. 2019;34(12):705–712. https://doi.org/10.1177/0883073819845827

8. von Wyl V., Décard B.F., Benkert P., Lorscheider J., Hänni P., Lienert C. et al. Infl uence of age at disease onset on future relapses and disability progression in patients with multiple sclerosis on immunomodulatory treatment. Eur J Neurol. 2020;27(6):1066–1075. https://doi.org/10.1111/ene.14191

9. Padilha I.G., Fonseca A.P.A., Pettengill A.L.M., Fragoso D.C., Pacheco F.T., Nunes R.H. et al. Pediatric multiple sclerosis: from clinical basis to imaging spectrum and diff erential diagnosis. Pediatric radiology. 2020;50(6):776–792. https://doi.org/10.1007/s00247-019-04582-3

10. Bar-Or A., Hintzen R.Q., Dale R.C., Rostasy K., Brück W., Chitnis T. Immunopathophysiology of pediatric CNS infl ammatory demyelinating diseases. Neurology. 2016;87(9):12–19. https://doi.org/10.1212/WNL.0000000000002821

11. International Multiple Sclerosis Genetics Consortium. Multiple sclerosis genomic map implicates peripheral immune cells and microglia in susceptibility. Science. 2019;365(6460):eaav7188. https://doi.org/10.1126/science.aav7188

12. Schmidt H., Williamson D., Ashley-Koch A. HLA-DR15 haplotype and multiple sclerosis: a HuGE review. American Journal of Epidemiology. 2007;165(10):1097–1109. https://doi.org/10.1093/aje/kwk118

13. Ramagopalan S.V., Morris A.P., Dyment D.A., Herrera B.M., DeLuca G.C., Lincoln M.R. et al. The inheritance of resistance alleles in multiple sclerosis. PLoS genetics. 2007;3(9):1607–1613. https://doi.org/10.1371/journal.pgen.0030150

14. Zhang Q., Lin C.Y., Dong Q., Wang J., Wang W. Relationship between HLA-DRB1 polymorphism and susceptibility or resistance to multiple sclerosis in Caucasians: a meta-analysis of nonfamily-based studies. Autoimmunity reviews. 2011;10(8):474–481. https://doi.org/10.1016/j.autrev.2011.03.003

15. Boiko A.N., Gusev E.I., Sudomoina M.A., Alekseenkov A.D., Kulakova O.G., Bikova O.V. et al. Association and linkage of juvenile MS with HLA-DR2(15) Neurology. 2002;58(4):658–660. https://doi.org/10.1212/wnl.58.4.658

16. Disanto G., Magalhaes S., Handel A.E., Morrison K.M., Sadovnick A.D., Ebers G.C. et al. Canadian Pediatric Demyelinating Disease Network. HLA-DRB1 confers increased risk of pediatric-onset MS in children with acquired demyelination. Neurology. 2011;76:781–786. https://doi.org/10.1212/WNL.0b013e31820ee1cd

17. Ramagopalan S.V., Knight J.C., Ebers G.C. Multiple sclerosis and the major histocompatibility complex. Current opinion in neurology. 2009;22(3):219–225. https://doi.org/10.1097/WCO.0b013e32832b5417

18. Rensel M. Long-Term Treatment Strategies of Pediatric Multiple Sclerosis, Including the use of Disease Modifying Therapies. Children (Basel). 2019;6(6):73. https://doi.org/10.3390/children6060073

19. Simone M., Chitnis T. Use of Disease-Modifying Therapies in Pediatric MS. Current treatment options in neurology. 2016;18(8):36. https://doi.org/10.1007/s11940-016-0420-7

20. Chitnis T., Pohl D. Pediatric demyelinating disorders Global updates, controversies, and future directions. Neurology. 2016;87(9):S1–S3. https://doi.org/10.1212/WNL.0000000000002882

21. Smagina I.V., Elchaninova S.A., Zolovkina A.G., Ignatova Iu.N., Kudriavtseva E.A. Genetic risk factors for multiple sclerosis in the population of Altay. Zhurnal Nevrologii i Psikhiatrii imeni S.S. Korsakova. 2011;111(5):42–45. (In Russ.)].

22. Polman C.H., Reingold S.C., Banwell B., Clanet M., Cohen J.A., Filippi M. et al. Diagnostic criteria for multiple sclerosis: 2010 Revisions to the McDonald criteria. Annals of neurology. 2011;69(2):292–302. https://doi.org/10.1002/ana.22366

23. Kurtzke J.F. Rating neurologic impairment in multiple sclerosis: an expanded disability status scale (EDSS). Neurology. 1983;33(11):1444–1452. https://doi.org/10.1212/wnl.33.11.1444

24. Riccio M.E., Buhler S., Nunes J.M., Vangenot C., Cuénod M., Currat M. et al. 6(th) IHIW: analysis of HLA population data, with updated results for 1996 to 2012 workshop data (AHPD project report). International journal of immunogenetics. 2013;40(1):21–30. https://doi.org/10.1111/iji.12033

25. Terasaki P.I., Gjertson D.W., eds. HLA 1997. UCLA Tissue Typing Laboratory. Los Angeles: California; 1997:475 p.

26. Banwell B., Bar-Or A., Arnold D.L., Sadovnick D., Narayanan S., McGowan M. et al. Clinical, environmental, and genetic determinants of multiple sclerosis in children with acute demyelination: a prospective national cohort study. The Lancet. Neurology. 2011;10(5):436–445. https://doi.org/10.1016/S1474-4422(11)70045-X

27. Gianfrancesco M.A., Stridh P., Rhead B., Shao X., Xu E., Graves J.S. et al. Network of Pediatric Multiple Sclerosis Centers (2017). Evidence for a causal relationship between low vitamin D, high BMI, and pediatric-onset MS. Neurology. 2017;88(17):1623–1629. https://doi.org/10.1212/WNL.0000000000003849

28. Anagnostouli M.C., Manouseli A., Artemiadis A.K., Katsavos S. HLA–DRB1* allele frequencies in pediatric, adolescent, and adult–onset multiple sclerosis patients, in a hellenic sample. Evidence for new and established associations. Journal of multiple sclerosis. 2014;1:104. http://dx.doi.org/10.4172/jmso.1000104

29. An Pelt E.D., Mescheriakova J.Y., Makhani N., Ketelslegers I.A., Neuteboom R.F., Kundu S. et al. Risk genes associated with pediatric-onset MS but not with monophasic acquired CNS demyelination. Neurology. 2013;81(23):1996–2001. https://doi.org/10.1212/01.wnl.0000436934.40034eb

30. Waubant E., Ponsonby A.L., Pugliatti M., Hanwell H., Mowry E.M., Hintzen R.Q. Environmental and genetic factors in pediatric infl ammatory demyelinating diseases. Neurology. 2016;87(9Suppl2):S20–S27. https://doi.org/10.1212/WNL.0000000000003029

31. Consortium TIMSGCtWTCC, Wellcome Trust Case Control Consortium 2. Genetic risk and a primary role for cellmediated immune mechanisms in multiple sclerosis. Nature. 2011;476:214–219. https://doi.org/10.1038/nature10251

32. Hollenbach J.A., Oksenberg J.R. The immunogenetics of multiple sclerosis: A comprehensive review. Journal of autoimmunity. 2015;64:13–25. https://doi.org/10.1016/j.jaut.2015.06.010

33. Kwon O.J., Karni A., Israel S., Brautbar C., Amar A., Meiner Z. et al. HLA class II susceptibility to multiple sclerosis among Ashkenazi and non-Ashkenazi Jews. Archives of neurology. 1999;56(5):555–560. https://doi.org/10.1001/archneur.56.5.555

34. Cocco E., Sardu C., Pieroni E., Valentini M., Murru R., Costa G. et al. HLA-DRB1-DQB1 haplotypes confer susceptibility and resistance to multiple sclerosis in Sardinia. PloS one. 2012;7(4): e33972. https://doi.org/10.1371/journal.pone.0033972

35. Amirzargar A., Mytilineos J., Yousefi pour A., Farjadian S., Scherer S., Opelz G. et al. HLA class II (DRB1, DQA1 and DQB1) associated genetic susceptibility in Iranian multiple sclerosis (MS) patients. European journal of immunogenetics. 1998;25(4):297–301. https://doi.org/10.1046/j.13652370.1998.00101.x

36. Brum D.G., Barreira A.A., Louzada-Junior P., MendesJunior C.T., Donadi E.A. Association of the HLA-DRB1*15 allele group and the DRB1*1501 and DRB1*1503 alleles with multiple sclerosis in White and Mulatto samples from Brazil. Journal of neuroimmunology. 2007;189(1–2):118–124. https://doi.org/10.1016/j.jneuroim.2007.06.009

37. Quelvennec E., Bera O., Cabre P., Alizadeh M., Smadja D., Jugde F. et al. Genetic and functional studies in multiple sclerosis patients from Martinique attest for a specifi c and direct role of the HLA-DR locus in the syndrome. Tissue antigens. 2003;61(2):166–171. https://doi.org/10.1046/j.0001-2815.2002.00008.x

38. Ballerini C., Guerini F.R., Rombolà G., Rosati E., Massacesi L., Ferrante P. et al. HLA-multiple sclerosis association in continental Italy and correlation with disease prevalence in Europe. Journal of neuroimmunology. 2004;150(1–2):178–185. https://doi.org/10.1016/j.jneuroim.2004.01.015

39. Fernández O., Fernández V., Alonso A., Caballero A., Luque G., Bravo M. et al. DQB1*0602 allele shows a strong association with multiple sclerosis in patients in Malaga, Spain. Journal of neurology. 2004;251(4):440–444. https://doi.org/10.1007/s00415-004-0350-2

40. Hillert J., Käll T., Olerup O., Söderström M. Distribution of HLADw2 in optic neuritis and multiple sclerosis indicates heterogeneity. Acta neurologica Scandinavica. 1996;94(3):161–166. https://doi.org/10.1111/j.1600-0404.1996.tb07047.x

41. Hensiek A.E., Sawcer S.J., Feakes R., Deans J., Mander A., Akesson E. et al. HLA-DR 15 is associated with female sex and younger age at diagnosis in multiple sclerosis. J Neurol Neurosurg Psychiatry. 2002;72(2):184–187. http://dx.doi.org/10.1136/jnnp.72.2.184

42. Fukazawa T., Yamasaki K., Ito H., Kikuchi S., Minohara M., Horiuchi I. et al. Both the HLA-CPB1 and -DRB1 alleles correlate with risk for multiple sclerosis in Japanese: clinical phenotypes and gender as important factors. Tissue Antigens. 2000;55(3):199–205. https://doi.org/10.1034/j.1399-0039.2000.550302.x

43. McDonnell G.V., Mawhinney H., Graham C.A., Hawkins S.A., Middleton D. A study of the HLA-DR region in clinical subgroups of multiple sclerosis and its infl uence on prognosis. J Neurol Sci. 1999;165(1):77–83. https://doi.org/10.1016/S0022-510X(99)00084-2

44. Modin H., Olsson W., Hillert J., Masterman T. Modes of action of HLA-DR susceptibility specifi cities in multiple sclerosis. American journal of human genetics. 2004;74(6):1321–1322. https://doi.org/10.1086/420977

45. Marrosu M.G., Murru M.R., Costa G., Cucca F., Sotgiu S., Rosati G. et al. Multiple sclerosis in Sardinia is associated and in linkage disequilibrium with HLA-DR3 and -DR4 alleles. American journal of human genetics. 1997;61(2):454–457. https://doi.org/10.1016/S0002-9297(07)64074-9

46. Кaimen-Maciel D.R., Reiche E.M., Borelli S.D., Morimoto H.K., Melo F.C., Lopes J. et al. HLA-DRB1* allele-associated genetic susceptibility and protection against multiple sclerosis in Brazilian patients. Molecular medicine reports. 2009;2(6):993–998. https://doi.org/10.3892/mmr_00000204

47. Ramagopalan S.V., Morris A.P., Dyment D.A., Herrera B.M., DeLuca G.C., Lincoln M.R. et al. The inheritance of resistance alleles in multiple sclerosis. PLoS genetics. 2007;3(9):1607–1613. https://doi.org/10.1371/journal.pgen.0030150


Review

For citations:


Elchaninova E.Yu., Smagina I.V., Afanas’eva A.I., Elchaninova S.A. HLA-DRB1 polymorphism and risk of pediatric-onset and adult-onset multiple sclerosis: a case–control study. Russian neurological journal. 2023;28(1):33-40. (In Russ.) https://doi.org/10.30629/2658-7947-2023-28-1-33-40

Views: 544


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2658-7947 (Print)
ISSN 2686-7192 (Online)