Показатели системы цитокинов и неоангиогенеза в крови при острой дискогенной пояснично-крестцовой радикулопатии у пациентов молодого возраста
https://doi.org/10.30629/2658-7947-2022-27-5-51-58
Аннотация
Введение. Патогенез дискогенной пояснично-крестцовой боли у лиц молодого возраста является сложным и многокомпонентным. Данные по содержанию цитокинов и факторов неоангиогенеза при острой дискогенной пояснично-крестцовой радикулопатии немногочисленны и зачастую противоречивы.
Цель исследования: оценить показатели системы цитокинов и неоангиогенеза в крови при острой дискогенной пояснично-крестцовой радикулопатии у пациентов молодого возраста.
Материал и методы. В исследовании приняли участие 49 пациентов (27 (55,1%) мужчин и 22 (44,9%) женщины) в возрасте 36 [27; 45] лет с острой пояснично-крестцовой болью, обусловленной дегенеративными изменениями позвоночника и компрессией спинномозговых нервов по данным МРТ. Группу контроля составили 17 здоровых лиц (10 (58,8%) мужчин и 7 (41,2%) женщин) в возрасте 33 [25; 41] лет. Уровень C-реактивного белка измеряли на автоматическом биохимическом анализаторе Konelab 30Iprime (ThermoFisher, Финляндия). Уровни интерлейкина-1β (ИЛ-1β), интерлейкина-6 (ИЛ-6), интерлейкина-8 (ИЛ-8), фактора некроза опухоли альфа (ФНО-α), фактора роста эндотелия cосудов А (ФРЭС-А) в крови определяли твердофазным иммуноферментным методом (ELISA) на плашечном ИФА-анализаторе Реал-бест (Россия) с использованием наборов реагентов Cloud-Clone Corp. (США, Китай).
Результаты. У пациентов молодого возраста с острой дискогенной пояснично-крестцовой радикулопатией по сравнению с контрольной группой выявлено повышение уровней С-реактивного белка (11,2 [7,1; 15,3] против 4,2 [3,5; 4,9] мг/мл; р = 0,011), ФНО-α (23,1 [16,8; 29,5] против 9,7 [6,9; 12,5] пг/мл; р = 0,001), ИЛ-1β (4,7 [3,1; 6,3] против 3,2 [2,3;4,1] пг/мл; р = 0,041), ИЛ-6 (11,2 [6,1; 16,3] против 4,5 [3,1; 5,9] пг/мл; р = 0,007), ИЛ-8 (30,3 [21,9; 48,8] против 20,5 [8,5; 32,6] пг/мл; р = 0,023) и ФРЭС-А (318 [260; 570] против 168 [100; 240] пг/мл; р = 0,002).
Заключение. Полученные результаты подтверждают значение провоспалительных факторов и показателей неоангиогенеза в развитии острой дискогенной пояснично-крестцовой радикулопатии у пациентов молодого возраста.
Об авторах
М Ю. МаксимоваРоссия
Москва
Я. А. Котляр
Россия
Москва
А. А. Шабалина
Россия
Москва
Список литературы
1. Парфенов В.А., Яхно Н.Н., Давыдов О.С., Кукушкин М.Л., Чурюканов М.В., Головачева В.А., и др. Дискогенная пояснично-крестцовая радикулопатия. Рекомендации Российского общества по изучению боли (РОИБ). Неврология, нейропсихиатрия, психосоматика. 2020;12(4):15–24. [Parfenov V.A., Yakhno N.N., Davydov O.S., Kukushkin M.L., Churyukanov M.V., Golovacheva V.A. et al. Discogenic lumbosacral radiculopathy. Recommendations of the Russian Association for the Study of Pain (RSSP). Neurology, Neuropsychiatry, Psychosomatics. 2020;12(4):15–24. (In Russ.)]. https://doi.org/10.14412/2074-2711-2020-4-15-24
2. Konstantinou K., Dunn K.M. Sciatica: review of epidemiological studies and prevalence estimates. Spine (Phila Pa 1976). 2008;33(22):2464–72. https://doi.org/10.1097/BRS.0b013e318183a4a2
3. Bardin L.D., King P., Maher C.G. Diagnostic triage for low back pain: a practical approach for primary care. Med J Aust. 2017;206(6):268–73. https://doi.org/10.5694/mja16.00828
4. Battié M.C., Joshi A.B., Gibbons L.E.; ISSLS Degenerative Disc Disease: What is in a Name? Degenerative Spinal Phenotypes Group. Spine (Phila Pa 1976). 2019;44(21):1523–1529. https://doi.org/10.1097/BRS.0000000000003103
5. Urits I., Burshtein A., Sharma M., Testa L., Gold P.A., Orhurhu V. et al. Low Back Pain, a Comprehensive Review: Pathophysiology, Diagnosis, and Treatment. Curr Pain Headache Rep. 2019;23(3):23. https://doi.org/10.1007/s11916-019-0757-1
6. Hayes A.J., Benjamin M., Ralphs J.R. Extracellular matrix in development of the intervertebral disc. Matrix Biol. 2001;20(2):107–121. https://doi.org/10.1016/s0945-053x(01)00125-1
7. Hutton W.C., Ganey T.M., Elmer W.A., Kozlowska E., Ugbo J.L., Doh E.S., Whitesides T.E. Jr. Does long-term compressive loading on the intervertebral disc cause degeneration? Spine (Phila Pa 1976). 2000;25(23):2993–3004. https://doi.org/10.1097/00007632-200012010-00006
8. Urban J.P., Roberts S. Degeneration of the intervertebral disc. Arthritis Res Ther. 2003;5(3):120–130. https://doi.org/10.1186/ar629
9. Roughley P.J., Alini M., Antoniou J. The role of proteoglycans in aging, degeneration and repair of the intervertebral disc. Biochem Soc Trans. 2002;30(Pt6):869–874. https://doi.org/10.1042/bst0300869
10. Khan A.N., Jacobsen H.E., Khan J., Filippi C.G., Levine M., Lehman R.A. Jr. et al. Inflammatory biomarkers.of.low back pain and disc degeneration: a review. Ann N Y Acad Sci. 2017;1410(1):68–84. https://doi.org/10.1111/nyas.13551
11. Li W., Gong Y., Liu .J, Guo Y., Tang H., Qin S. et al. Peripheral and Central Pathological Mechanisms of Chronic Low Back Pain: A Narrative Review. J Pain Res. 2021;14:1483–1494. https://doi.org/10.2147/JPR.S306280
12. Raj P.P. Intervertebral disc: anatomy-physiology-pathophysiology-treatment. Pain Pract. 2008;8(1):18–44. https://doi.org/10.1111/j.1533-2500.2007.00171.x
13. Ohtori S., Inoue G., Miyagi M., Takahashi K. Pathomechanisms of discogenic low back pain in humans and animal models. Spine J. 2015;15(6):1347–1355. https://doi.org/10.1016/j.spinee.2013.07.490
14. Pfirrmann C.W., Dora C., Schmid M.R., Zanetti M., Hodler J., Boos N. MR image-based grading of lumbar nerve root compromise due to disk herniation: reliability study with surgical correlation. Radiology. 2004;230(2):583–8. https://doi.org/10.1148/radiol.2302021289
15. Walsh J., Rabey M.I., Hall T.M. Agreement and correlation between the self-report leeds assessment of neuropathic symptoms and signs and DouleurNeuropathique 4 Questions neuropathicpain screening tools in subjects with low back-related leg pain. J Manipulative Physiol Ther. 2012;35(3):196–202. https://doi.org/10.1016/j.jmpt.2012.02.001
16. Freynhagen R., Baron R., Gockel U., Tölle T.R. painDETECT: a newscreening questionnaire to identify neuropathic components in patients with back pain. Curr Med Res Opin. 2006;22(10):1911–20. https://doi.org/10.1185/030079906X132488
17. Sun Z., Zhang M., Zhao X.H., Liu Z.H., Gao Y., Samartzis D. et al. Immune cascades in human intervertebral disc: the pros and cons. Int J Clin Exp Pathol. 2013;6(6):1009–14. Print 2013. PMID: 23696917.
18. Yoshida M., Nakamura T., Sei A., Kikuchi T., Takagi K., Matsukawa A. Intervertebral disc cells produce tumor necrosis factor alpha, interleukin-1beta, and monocyte chemoattractant protein-1 immediately after herniation: an experimental study using a new hernia model. Spine. 2005;30(1):55–61. https://doi.org/10.1097/01.brs.0000149194.17891.bf
19. Takada T., Nishida K., Doita M., Miyamoto H., Kurosaka M. Interleukin-6 production is upregulated by interaction between disc tissue and macrophages. Spine. 2004;29(10):1089–1092; discussion 1093. https://doi.org/10.1097/00007632-200405150-00007
20. Lim Y.Z., Wang Y., Cicuttini F.M., Hughes H.J., Chou L., Urquhart D.M. et al. Association Between Inflammatory Biomarkers and Nonspecific Low Back Pain: A Systematic Review. Clin J Pain. 2020;36(5):379–389. https://doi.org/10.1097/AJP.0000000000000810
21. Kushner I., Jiang S.L., Zhang D.X., Lozanski G., Samols D. Do post-transcriptional mechanisms participate in induction of C-reactive protein and serum amyloid A by IL-6 and IL-1? Interleukin-6 Type Cytokines. 1995;762:102–107. https://doi.org/10.1111/j.1749-6632.1995.tb32318.x
22. Sproston N.R., Ashworth J.J. Role of C-Reactive Protein at Sites of Inflammation and Infection. Front Immunol. 2018;9:754. https://doi.org/10.3389/fimmu.2018.00754
23. Le Gars L., Borderie D., Kaplan G., Berenbaum F. Systemic inflammatory response with plasma C-reactive protein elevation in disk-related lumbosciatic syndrome. Joint Bone Spine. 2000;67(5):452–5. PMID: 11143913
24. Gebhardt K., Brenner H., Stürmer T. et al. The course of high-sensitive C-reactive protein in correlation with pain and clinical function in patients with acute lumbosciatic pain and chronic low back pain — a 6 months prospective longitudinal study. Eur J Pain. 2006;10(8):711–9. https://doi.org/10.1016/j.ejpain.2005.11.005
25. Stürmer T., Raum E., Buchner M., Gebhardt K., Schiltenwolf M., Richter W., Brenner H. Pain and high sensitivity C reactive protein in patients with chronic low back pain and acute sciatic pain. Ann Rheum Dis. 2005;64(6):921–5. https://doi.org/10.1136/ard.2004.027045
26. Wang X., Jia R., Li J., Zhu Y., Liu H., Wang W. et al. Research Progress on the Mechanism of Lumbarmultifidus Injury and Degeneration. Oxid Med Cell Longev. 2021;2021:6629037. https://oi.org/10.1155/2021/6629037
27. Ren K., Dubner R. Interactions between the immune and nervous systems in pain. Nature Medicine. 2010;16(11):1267–76. https://doi.org/10.1038/nm.2234
28. Lu L., Hu J., Wu Q., An Y., Cui W., Wang J., Ye Z. Berberine prevents human nucleus pulposus cells from IL1βinduced extracellular matrix degradation and apoptosis by inhibiting the NFκB pathway. Int J Mol Med. 2019;43(4):1679–1686. https://doi.org/10.3892/ijmm.2019.4105
29. Hu J., Yan Q., Shi C., Tian Y., Cao P., Yuan W. BMSC paracrine activity attenuates interleukin-1β-induced inflammation and apoptosis in rat AF cells via inhibiting relative NF-κB signaling and the mitochondrial pathway. Am J Transl Res. 2017;9(1):79–89.
30. Wang K., Chen T., Ying X., Zhang Z., Shao Z., Lin J. et al. Ligustilide alleviated IL-1β induced apoptosis and extracellular matrix degradation of nucleus pulposus cells and attenuates intervertebral disc degeneration in vivo. Int Immunopharmacol. 2019;69:398–407. https://doi.org/10.1016/j.intimp.2019.01.004
31. Wang S.L., Yu Y.L., Tang C.L., Lv F.Z. Effects of TGF-β1 and IL-1β on expression of ADAMTS enzymes and TIMP-3 in human intervertebral disc degeneration. Exp Ther Med. 2013;6(6):1522–1526. https://doi.org/10.3892/etm.2013.1348
32. Li X., Lin F., Wu Y., Liu N., Wang J., Chen R., Lu Z. Resveratrol attenuates inflammation environment-induced nucleus pulposus cell senescence in vitro. Biosci Rep. 2019;39(5):BSR20190126. https://doi.org/10.1042/BSR20190126
33. Shamji M.F., Setton L.A., Jarvis W., So S., Chen J., Jing L. et al. Proinflammatory cytokine expression profile in degenerated and herniated human intervertebral disc tissues. Arthritis Rheum. 2010;62(7):1974–1982. https://doi.org/10.1002/art.27444
34. Moen A., Lind A.L., Thulin M., Kamali-Moghaddam M., Røe C., Gjerstad J., Gordh T. Inflammatory Serum Protein Profiling of Patients with Lumbar Radicular Pain One Year after Disc Herniation. Int J Inflam. 2016;2016:3874964. https://doi.org/10.1155/2016/3874964
35. Wang K., Bao J.P., Yang S., Hong X., Liu L., Xie X.H., Wu X.T. A cohort study comparing the serum levels of pro- or anti-inflammatory cytokines in patients with lumbar radicular pain and healthy subjects. Eur Spine J. 2016;25(5):1428–1434. https://doi.org/10.1007/s00586-015-4349-4
36. Palada V., Ahmed A.S., Finn A., Berg S., Svensson C.I., Kosek E. Characterization of neuroinflammation and periphery-to-CNS inflammatory cross-talk in patients with disc herniation and degenerative disc disease. Brain Behav Immun. 2019;75:60–71. https://doi.org/10.1016/j.bbi.2018.09.010
37. Aripaka S.S., Bech-Azeddine R., Jørgensen L.M., Chughtai S.A., Gaarde C., Bendix T., Mikkelsen J.D. Low back pain scores correlate with the cytokine mRNA level in lumbar disc biopsies: a study of inflammatory markers in patients undergoing lumbar spinal fusion. Eur Spine J. 2021;30(10):2967–2974. https://doi.org/10.1007/s00586-021-06868-3
38. Pedersen L.M., Schistad E, Jacobsen LM, Røe C, Gjerstad J. Serum levels of the pro-inflammatory interleukins 6 (IL-6) and -8 (IL-8) in patients with lumbar radicular pain due to disc herniation: A 12-month prospective study. Brain Behav Immun. 2015;46:132–6. https://doi.org/10.1016/j.bbi.2015.01.008
39. Weber K.T., Alipui D.O., Sison C.P., Bloom O., Quraishi S., Overby M.C. et al. Serum levels of the proinflammatory cytokine interleukin-6 vary based on diagnoses in individuals with lumbar intervertebral disc diseases. Arthritis Res Ther. 2016;18:3. https://doi.org/10.1186/s13075-015-0887-8
40. Le Maitre C.L., Freemont A.J., Hoyland J.A. The role of interleukin-1 in the pathogenesis of human intervertebral disc degeneration. Arthritis Res Ther. 2005;7(4):R732–45. https://doi.org/10.1186/ar1732
41. Murata Y., Rydevik B., Nannmark U., Larsson K., Takahashi K.,Kato Y., Olmarker K. Local application of interleukin-6 to the dorsal root ganglion induces tumor necrosis factor-α in the dorsal root ganglion and results in apoptosis of the dorsal root ganglion cells. Spine (Phila Pa 1976). 2011;36(12):926–32. https://doi.org/10.1097/BRS.0b013e3181e7f4a9
42. Zu B., Pan H., Zhang X.J., Yin Z.S. Serum Levels of the Inflammatory Cytokines in Patients with Lumbar Radicular Pain Due to Disc Herniation. Asian Spine J. 2016;10(5):843–849. https://doi.org/10.4184/asj.2016.10.5.843
43. Uçeyler N., Rogausch J.P., Toyka K.V., Sommer C. Differential expression of cytokines in painful and painless neuropathies. Neurology. 2007;69(1):42–49. https://doi.org/10.1212/01.wnl.0000265062.92340.a5
44. Wang D.L., Jiang S.D., Dai L.Y. Biologic response of the intervertebral disc to static and dynamic compression in vitro. Spine (Phila Pa 1976). 2007;32(23):2521–8. https://doi.org/10.1097/BRS.0b013e318158cb61
45. Walter B.A., Likhitpanichkul M., Illien-Junger S., Roughley P.J., Hecht A.C., Iatridis J.C. TNF-α transport induced by dynamic loading alters biomechanics of intact intervertebral discs. PLoS One. 2015;10(3):e0118358. https://doi.org/10.1371/journal.pone.0118358
46. Séguin C.A., Pilliar R.M., Roughley P.J., Kandel R.A. Tumor necrosis factor-alpha modulates matrix production and catabolism in nucleus pulposus tissue. Spine (Phila Pa 1976). 2005;30(17):1940–8. https://doi.org/10.1097/01.brs.0000176188.40263.f9
47. Ponnappan R.K., Markova D.Z., Antonio P.J., Murray H.B., Vaccaro A.R., Shapiro I.M. et al. An organ culture system to model early degenerative changes of the intervertebral disc. Arthritis Res Ther. 2011;13(5):R171. https://doi.org/10.1186/ar3494
48. Hayashi S., Taira A., Inoue G., Koshi T., Ito T., Yamashita M. et al. TNF-alpha in nucleus pulposus induces sensory nerve growth: a study of the mechanism of discogenic low back pain using TNFalpha-deficient mice. Spine (Phila Pa 1976). 2008;33(14):1542–6. https://doi.org/10.1097/BRS.0b013e318178e5ea
49. Le Maitre C.L., Hoyland J.A., Freemont A.J. Catabolic cytokine expression in degenerate and herniated human intervertebral discs: IL-1beta and TNFalpha expression profile. Arthritis Res Ther. 2007;9(4):R77. https://doi.org/10.1186/ar2275
50. Li Y., Liu J., Liu Z.Z., Duan D.P. Inflammation in low back pain may be detected from the peripheral blood: suggestions for biomarker. Biosci Rep. 2016;36(4). https://doi.org/10.1042/BSR20160187
51. van den Berg R., Jongbloed E.M., de Schepper E., Bierma-Zeinstra S., Koes B.W., Luijsterburg P. The association between pro-inflammatory biomarkers and nonspecific low back pain: a systematic review. Spine J. 2018;18(11):2140–2151. https://doi.org/10.1016/j.spinee.2018.06.349
52. García-Cosamalón J., del Valle M.E., Calavia M.G., GarcíaSuárez O., López-Muñiz A., Otero J., Vega J.A. Intervertebral disc, sensory nerves and neurotrophins: who is who in discogenic pain? J Anat. 2010;217(1):1–15. https://doi.org/10.1111/j.1469-7580.2010.01227.x
53. Wuertz K., Haglund L. Inflammatory mediators in intervertebral disk degeneration and discogenic pain. Global Spine J. 2013;3(3):175–184. https://doi.org/10.1055/s-0033-1347299
54. Johnson W.E., Caterson B., Eisenstein S.M., Hynds D.L., Snow D.M., Roberts S. Human intervertebral disc aggrecan inhibits nerve growth in vitro. Arthritis Rheum. 2002;46(10):2658–2664. https://doi.org/10.1002/art.10585
55. Peng B., Wu W., Hou S., Li P., Zhang C., Yang Y. The pathogenesis of discogenic low back pain. J Bone Joint Surg Br. 2005;87(1):62–67. PMID: 15686239.
56. Risbud M.V., Shapiro IM. Role of cytokines in intervertebral disc degeneration: pain and disc content. Nat Rev Rheumatol. 2014;10(1):44–56. https://doi.org/10.1038/nrrheum.2013.160
57. van den Berg R., Jongbloed E.M., de Schepper E.I.T., BiermaZeinstra S.M.A., Koes B.W., Luijsterburg P.A.J. The association between pro-inflammatory biomarkers and nonspecific low back pain: a systematic review. Spine J. 2018;18(11):2140–2151. https://doi.org/10.1016/j.spinee.2018.06.349
58. Shamji M.F., Setton L.A., Jarvis W., So S., Chen J., Jing L. et al. Proinflammatory cytokine expression profile in degenerated and herniated human intervertebral disc tissues. Arthritis Rheum. 2010;62(7):1974–82. https://doi.org/10.1002/art.27444
59. Korhonen T., Karppinen J., Malmivaara A., Autio R., Niinimäki J., Paimela L. et al. Efficacy of infliximab for disc herniation-induced sciatica: one-year follow-up. Spine (Phila Pa 1976). 2004;29(19):2115–9. https://doi.org/10.1097/01.brs.0000141179.58778.6c
60. Finnerup N.B., Attal N., Haroutounian S., McNicol E., Baron R.,Dworkin R.H. et al. Pharmacotherapy for neuropathic pain in adults: a systematic review and meta-analysis. Lancet Neurol. 2015;14(2):162–73. https://doi.org/10.1016/S1474-4422(14)70251-0
61. Kadow T., Sowa G., Vo N., Kang J.D. Molecular basis of intervertebral disc degeneration and herniations: what are the important translational questions. Clin Orthop Relat Res. 2015;473(6):1903–1912. https://doi.org/10.1007/s11999-014-3774-8
62. Kim J.H., Choi H., Suh M.J., Shin J.H., Hwang M.H., Lee H.M. Effect of biphasic electrical current stimulation on IL-1β-stimulated annulus fibrosus cells using in vitro microcurrent generating chamber system. Spine (Phila Pa 1976). 2013;38(22):E1368 —76. https://doi.org/10.1097/BRS.0b013e3182a211e3
63. Zhan S., Wang K., Song Y., Li S., Yin H., Luo R. et al. Long non-coding RNA HOTAIR modulates intervertebral disc degenerative changes via Wnt/β-catenin pathway. Arthritis Res Ther. 2019;21(1):201. https://doi.org/10.1186/s13075-019-1986-8
64. Fang W., Zhou X., Wang J., Xu L., Zhou L., Yu W. et al. Wogonin mitigates intervertebral disc degeneration through the Nrf2/ARE and MAPK signaling pathways. Int Immunopharmacol. 2018;65:539–549. https://doi.org/10.1016/j.intimp.2018.10.024
65. Johnson W.E., Caterson B., Eisenstein S.M., Hynds D.L., Snow D.M., Roberts S. Human intervertebral disc aggrecan inhibits nerve growth in vitro. Arthritis Rheum. 2002;46(10):2658–2664. https://doi.org/10.1002/art.10585
66. Liu X.W., Kang J., Fan X.D., Sun L.F. Expression and significance of VEGF and p53 in rat degenerated intervertebral disc tissues. Asian Pac J Trop Med. 2013;6(5):404–6. https://doi.org/10.1016/S1995-7645(13)60047-4
67. Hsu YH, Lin RM, Chiu YS, Liu WL, Huang KY. Effects of IL-1β, IL-20, and BMP-2 on Intervertebral Disc Inflammation under Hypoxia. J Clin Med. 2020 Jan 4;9(1):140. https://doi.org/10.3390/jcm9010140
68. Kwon W.K., Moon H.J., Kwon T.H., Park Y.K., Kim J.H. The Role of Hypoxia in Angiogenesis and Extracellular Matrix Regulation of Intervertebral Disc Cells During Inflammatory Reactions. Neurosurgery. 2017;81(5):867–875. https://doi.org/10.1093/neuros/nyx149
69. Autio R.A., Karppinen J., Niinimäki J., Ojala R., Kurunlahti M., Haapea M. et al. Determinants of spontaneous resorption of intervertebral disc herniations. Spine. 2006;31(11):1247–1252. https://doi.org/10.1097/01.brs.0000217681.83524.4a
70. Kobayashi S., Meir A., Kokubo Y., Uchida K., Takeno K., Miyazaki T. et al. Ultrastructural analysis on lumbar disc herniation using surgical specimens: role of neovascularization and macrophages in hernias. Spine. 2009;34(7):655–662. https://doi.org/10.1097/BRS.0b013e31819c9d5b
71. Molinos M., Almeida C.R., Caldeira J., Cunha C., Gon-çalves R.M., Barbosa M.A. Inflammation in intervertebral disc degeneration and regeneration. J R Soc Interface. 2015;12(104):20141191. https://doi.org/10.1098/rsif.2014.1191
Рецензия
Для цитирования:
Максимова М.Ю., Котляр Я.А., Шабалина А.А. Показатели системы цитокинов и неоангиогенеза в крови при острой дискогенной пояснично-крестцовой радикулопатии у пациентов молодого возраста. Российский неврологический журнал. 2022;27(5):51-58. https://doi.org/10.30629/2658-7947-2022-27-5-51-58
For citation:
Maksimova M.Yu., Kotlyar Y.А., Shabalina A.A. Cytokines and neoangiogenesis parameters in young patients with acute discogenic lumbosacral radiculopathy. Russian neurological journal. 2022;27(5):51-58. (In Russ.) https://doi.org/10.30629/2658-7947-2022-27-5-51-58