Serologic markers of Еpstein-Вarr virus infection in patients with pediatric multiple sclerosis
Abstract
Epstein–Barr virus (EBV) infection is considered as risk factor for multiple sclerosis (MS) and possibly a factor in the adverse course of the disease. Forty-three patients with remitting MS in remission with the onset of the disease before the age of 18 years and 49 volunteers without MS participated in the study. It was found that the majority of patients with MS, as well as the majority of the control were seropositive for EBV infection (100% and 91.8%, respectively, р = 0.120). All identified seropositive patterns are typical of EBV past-infection. The combination of anti-VCA IgG and anti-EBNA-1 IgG is more common in patients with MS (97.7% vs. 83.7% in control, p = 0.034). The anti-VCA IgG level above the median and the seropositive result for anti-EBNA-1 IgG are associated with MS (OR 5.29; 95СI 1.99–14.04; p < 0.001 and OR 15.36; 95СI 1.95–20.70; p = 0.009, respectively). Anti-VCA IgG levels above the median are associated with HLA-DRB1*1501 in patients with MS (OR 8.4; 95CI 0.87–80.92; p = 0.047). Anti-VCA IgG level, anti-EBNA-1 IgG are not correlated with the age of the MS onset, disability, frequency of exacerbations, as well as with serum concentrations of 25-hydroxy vitamin D. It can be assumed that the patients with remitting MS have features of the EBV past-infection immune status. Dynamic observation of the serological markers levels of EBV infection is important not only in remission, but also in exacerbation of MS. The results of these observations will assess the prospects of EBV infection control and treatment for the management of patients with MS.
About the Authors
I. V. SmaginaRussian Federation
Barnaul, 656038.
E. Yu. Elchaninova
Russian Federation
Barnaul, 656038.
References
1. Shmidt T.E., Yakhno N.N. Multiple sclerosis. Moskva: Izdatel’stvo MEDpress-inform; 2016. (in Russian).
2. Popova E.V., Boyko A.N., Hachanova N.V., Sharanova S.N. Epstein–Barr virus in the pathogenesis of multiple sclerosis (a review). Zhurnal Nevrologii i Psikhiatrii Imeni S.S. Korsakova. 2014;2: 29–34. (in Russian)
3. Guan Y., Jakimovski D., Ramanathan M., Weinstock-Guttman B., Zivadinov R. The role of Epstein–Barr virus in multiple sclerosis: from molecular pathophysiology to in vivo imaging. Neural. Regen. Res. 2019;14(3): 373–386. https://dx.doi.org/10.4103%2F1673–5374.245462
4. Lucas R.M., Hughes A.M., Lay M.L., Ponsonby A.L., Dwyer D.E., Taylor B.V. et al. Epstein–Barr virus and multiple sclerosis. J. Neurol. Neurosurg. Psychiatry. 2011;82:1142–1148. https://doi.org/10.1136/jnnp-2011–300174
5. Cohen J.I. Epstein–BarrVirus Infection. N. Engl. J. Med. 2000;343:481–491. http://dx.doi.org/10.1056/NEJM200008173430707
6. Owens G.P., Bennett J.L. Trigger, pathogen, or bystander: the complex nexus linking Epstein–Barr virus and multiple sclerosis. Mult. Scler. 2012;18(9): 1204–1208. https://dx.doi.org/10.1177%2F1352458512448109
7. Pender M.P. The essential role of Epstein–Barr virus in the pathogenesis of multiple sclerosis. Neuroscientist. 2011;17(4): 351–367. https://dx.doi.org/10.1177%2F1073858410381531
8. Fugl A., Andersen C.L. Epstein–Barr virus and its association with disease — a review of relevance to general practice. BMC Fam. Pract. 2019;20(1):62. https://dx.doi.org/10.1186%2Fs12875–019–0954–3
9. Vouloumanou E.K., Rafailidis P.I., Falagas M.E. Current diagnosis and management of infectious mononucleosis. Curr. Opin. Hematol. 2012;19: 14–20. https://doi.org/10.1097/MOH.0b013e32834daa08
10. Klutts J.S., Ford B.A., Perez N.R., Gronowski A.M. Evidence-based approach for interpretation of Epstein–Barr virus serological patterns. J. Clin. Microbiol. 2009;47(10): 3204–3210. https://dx.doi.org/10.1128%2FJCM.00164–09
11. Almohmeed Y.H., Avenell A., Aucott L., Vickers M.A. Systematic review and meta-analysis of the sero-epidemiological association between Epstein Barr virus and multiple sclerosis. PLoS One. 2013;8(4):e61110. https://dx.doi.org/10.1371%2Fjournal.pone.0061110
12. Xiao D., Ye X., Zhang N. Ou M., Guo С., Zhang В. et al. A meta-analysis of interaction between Epstein–Barr virus and HLA-DRB1*1501 on risk of multiple sclerosis. Sci. Rep. 2015;5:18083. https://dx.doi.org/10.1038%2Fsrep18083
13. Lünemann J.D., Tintoré M., Messmer B., Strowig T., Rovira A., Perkal H. et al. Elevated Epstein–Barr virus-encoded nuclear antigen-1 immune responses predict conversion to multiple sclerosis. Ann. Neurol. 2010;67(2): 159–169. https://doi.org/10.1002/ana.21886
14. Waubant E., Mowry E.M., Krupp L., Chitnis T., Yeh E.A., Kuntz N. et al. Antibody response to common viruses and human leukocyte antigen-DRB1 in pediatric multiple sclerosis. Mult. Scler. 2013;19(7):891–895. https://dx.doi.org/10.1177%2F1352458512469693
15. Najafipoor A., Roghanian R., Zarkesh-Esfahani S.H., Bouzari M., Etemadifar M. The beneficial effects of vitamin D3 on reducing antibody titers against Epstein–Barr virus in multiple sclerosis patients. Cell. Immunol. 2015;294(1):9–12. https://doi.org/10.1016/j.cellimm.2015.01.009
16. Røsjø E., Lossius A., Abdelmagid N., Lindstrøm J.C., Kampman M.T., Jørgensen L. et al. Effect of high-dose vitamin D3 supplementation on antibody responses against Epstein–Barr virus in relapsing-remitting multiple sclerosis. Mult. Scler. 2017;23(3): 395–402. https://doi.org/10.1177%2F1352458516654310
17. Polman C.H., Reingold S.C., Banwell B., Clanet M., Cohen J.A., Filippi M. et al. Diagnostic criteria for multiple sclerosis: 2010 revisions to the McDonald criteria. Ann. Neurol. 2011;69(2): 292–302. https://dx.doi.org/10.1002%2Fana.22366
18. Kurtzke J.F. Rating neurologic impairment in multiple sclerosis: an expanded disability status scale (EDSS). Neurol. 1983;33(11): 1444–1452. https://doi.org/10.1212/WNL.33.11.1444
19. Thacker E.L., Mirzaei F., Ascherio A. Infectious mononucleosis and risk for multiple sclerosis: a meta-analysis. Ann. Neurol. 2006;59(3):499–503. https://doi.org/10.1002/ana.20820
20. Belbasis L., Bellou V., Evangelou E., Ioannidis J.P., Tzoulaki I. Environmental risk factors and multiple sclerosis: an umbrella review of systematic reviews and meta-analyses. Lancet Neurol. 2015;14(3):263–273. https://doi.org/10.1016/S1474–4422(14)70267–4
21. Endriz J., Ho P.P., Steinman L. Time correlation between mononucleosis and initial symptoms of MS. Neurol. Neuroimmunol. Neuroinflamm. 2017;4(3):e308. https://doi.org/10.1212/NXI.0000000000000308
22. Niller H.H., Bauer G. Epstein–Barr Virus: Clinical Diagnostics. Methods Mol. Biol. 2017;1532: 33–55. https://doi.org/10.1007/978–1–4939–6655–4_2
23. Moss D.J., Burrows S.R., Silins S.L., Misko I., Khanna R. The immunology of Epstein–Barr virus infection. Philos. Trans. R. Soc. Lond. B. Biol. Sci. 2001;356(1408):475–488. https://doi.org/10.1098/rstb.2000.0784
24. Hassani A., Corboy J.R., Al-Salam S., Khan G. Epstein–Barr virus is present in the brain of most cases of multiple sclerosis and may engage more than just B cells. PLoS One. 2018;13(2): e0192109. https://dx.doi.org/10.1371%2Fjournal.pone.0192109
25. Ascherio A., Munger K.L., Lennette E.T., Spiegelman D., Hernan M.A., Olek M.J. et al. Epstein–Вarr virus antibodies and risk of multiple sclerosis: A prospective study. JAMA. 2001;286(24):3083–3088. https://doi.org/10.1001/jama.286.24.3083
26. Sundstrom P., Juto P., Wadell G., Hallmans G., Svenningsson A., Nyströmet L. еt al. An altered immune response to Epstein– Вarr virus in multiple sclerosis: A prospective study. Neurology. 2004;62(12):2277–2282. https://doi.org/10.1212/01.wnl.0000130496.51156.d7
27. DeLorenze G.N., Munger K.L., Lennette E.T., Orentreich N., Vogelman J.H., Ascherio A. Epstein–Вarr virus and multiple sclerosis: Evidence of association from a prospective study with long-term follow-up. Arch. Neurol. 2006;63(6):839–844. https://doi.org/10.1001/archneur.63.6.noc50328
28. Smagina I.V., Elchaninova S.A., Zolovkina A.G., Ignatova Yu.N., Kudryavtseva E.A. Geneticheskie faktory riska rasseyannogo skleroza v populyatsii Altayskogo kraya. Zhurnal nevrologii i psikhiatrii im. S.S. Korsakova. 2011;111(5):42–45 (in Russian)
29. Sundström P., Juto P., Wadell G., Hallmans G., Svenningsson A., Nyström L. et al. An altered immune response to Epstein–Barr virus in multiple sclerosis: a prospective study. Neurology. 2004;62(12):2277–2282. https://doi.org/10.1212/01.wnl.0000130496.51156.d7
30. Wergeland S., Myhr K.M., Løken-Amsrud K., Beiske A.G., Bjerve K.S., Hovdal H. et al. Vitamin D, HLA-DRB1 and Epstein–Barr virus antibody levels in a prospective cohort of multiple sclerosis patients. Eur. J. Neurol. 2016;23(6):1064–1070. https://doi.org/10.1111/ene.12986
31. Salzer J., Nyström M., Hallmans G., Stenlund H., Wadell G., Sundström P. Epstein–Barr virus antibodies and vitamin D in prospective multiple sclerosis biobank samples. Mult. Scler. 2013;19(12):1587–1591. https://doi.org/10.1177/1352458513483888
32. Ramien C., Pachnio A., Sisay S., Begum J., Leese A., Disanto G. et al. Hypovitaminosis-D and EBV: no interdependence between two MS risk factors in a healthy young UK autumn cohort. Mult. Scler. 2014;May;20(6):751–3. https://doi.org/10.1177/1352458513509507
33. Wandinger K-P., Jabs W., Siekhaus A., Bubel S., Trillenberg P., Wagner H-J. et al. Association between clinical disease activity and Epstein–Barr virus reactivation in MS. Neurology. 2000;55: 178–184. https://doi.org/10.1212/wnl.55.2.178
34. Pohl D. Epstein–Вarr virus and multiple sclerosis. J. Neurol. Sci. 2009;286(1–2): 62–64. https://doi.org/10.1016/j.jns.2009.03.028
35. Otto C., Hofmann J., Ruprecht K. Antibody producing B lineage cells invade the central nervous system predominantly at the time of and triggered by acute Epstein–Barr virus infection: A hypothesis on the origin of intrathecal immunoglobulin synthesis in multiple sclerosis. Med. Hypotheses. 2016;91:09–113. https://doi.org/10.1007/s00415–017–8656–z
36. Hassani A., Corboy J.R., Al-Salam S., Khan G. Epstein– Barr virus is present in the brain of most cases of multiple sclerosis and may engage more than just B cells. PLoS One. 2018;13(2):e0192109. https://dx.doi.org/10.1371%2Fjournal.pone.0192109
37. Pender M.P., Burrows S.R. Epstein–Barr virus and multiple sclerosis: potential opportunities for immunotherapy. Clin. Transl. Immunology. 2014;3(10):e27. https://doi.org/10.1038/cti.2014.25
Review
For citations:
Smagina I.V., Elchaninova E.Yu. Serologic markers of Еpstein-Вarr virus infection in patients with pediatric multiple sclerosis. Russian neurological journal. 2019;24(5):38-45. (In Russ.)