Preview

Российский неврологический журнал

Расширенный поиск

Серологические маркеры Эпштейна–Барр вирусной инфекции у больных педиатрическим рассеянным склерозом

Полный текст:

Об авторах

И. В. Смагина
Алтайский государственный медицинский университет Минздрава России
Россия

Барнаул, 656038.



Е. Ю. Ельчанинова
Алтайский государственный медицинский университет Минздрава России
Россия

Барнаул, 656038.



Список литературы

1. Шмидт Т.Е., Яхно Н.Н. Рассеянный склероз. Москва: Издательство МЕДпресс-информ; 2016.

2. Попова Е.В., Бойко А.Н., Хачанова Н.В., Шаранова С.Н. Вирус Эпштейна–Барр в патогенезе рассеянного склероза (обзор). Журнал неврологии и психиатрии им. С.С. Корсакова. 2014; 2: 29–34.

3. Guan Y., Jakimovski D., Ramanathan M., Weinstock-Guttman B., Zivadinov R. The role of Epstein–Barr virus in multiple sclerosis: from molecular pathophysiology to in vivo imaging. Neural. Regen. Res. 2019;14(3): 373–386. https://dx.doi.org/10.4103%2F1673–5374.245462

4. Lucas R.M., Hughes A.M., Lay M.L., Ponsonby A.L., Dwyer D.E., Taylor B.V. et al. Epstein–Barr virus and multiple sclerosis. J. Neurol. Neurosurg. Psychiatry. 2011;82:1142–1148. https://doi.org/10.1136/jnnp-2011–300174

5. Cohen J.I. Epstein–BarrVirus Infection. N. Engl. J. Med. 2000;343:481–491. http://dx.doi.org/10.1056/NEJM200008173430707

6. Owens G.P., Bennett J.L. Trigger, pathogen, or bystander: the complex nexus linking Epstein–Barr virus and multiple sclerosis. Mult. Scler. 2012;18(9): 1204–1208. https://dx.doi.org/10.1177%2F1352458512448109

7. Pender M.P. The essential role of Epstein–Barr virus in the pathogenesis of multiple sclerosis. Neuroscientist. 2011;17(4): 351–367. https://dx.doi.org/10.1177%2F1073858410381531

8. Fugl A., Andersen C.L. Epstein–Barr virus and its association with disease — a review of relevance to general practice. BMC Fam. Pract. 2019;20(1):62. https://dx.doi.org/10.1186%2Fs12875–019–0954–3

9. Vouloumanou E.K., Rafailidis P.I., Falagas M.E. Current diagnosis and management of infectious mononucleosis. Curr. Opin. Hematol. 2012;19: 14–20. https://doi.org/10.1097/MOH.0b013e32834daa08

10. Klutts J.S., Ford B.A., Perez N.R., Gronowski A.M. Evidence-based approach for interpretation of Epstein–Barr virus serological patterns. J. Clin. Microbiol. 2009;47(10): 3204–3210. https://dx.doi.org/10.1128%2FJCM.00164–09

11. Almohmeed Y.H., Avenell A., Aucott L., Vickers M.A. Systematic review and meta-analysis of the sero-epidemiological association between Epstein Barr virus and multiple sclerosis. PLoS One. 2013;8(4):e61110. https://dx.doi.org/10.1371%2Fjournal.pone.0061110

12. Xiao D., Ye X., Zhang N. Ou M., Guo С., Zhang В. et al. A meta-analysis of interaction between Epstein–Barr virus and HLA-DRB1*1501 on risk of multiple sclerosis. Sci. Rep. 2015;5:18083. https://dx.doi.org/10.1038%2Fsrep18083

13. Lünemann J.D., Tintoré M., Messmer B., Strowig T., Rovira A., Perkal H. et al. Elevated Epstein–Barr virus-encoded nuclear antigen-1 immune responses predict conversion to multiple sclerosis. Ann. Neurol. 2010;67(2): 159–169. https://doi.org/10.1002/ana.21886

14. Waubant E., Mowry E.M., Krupp L., Chitnis T., Yeh E.A., Kuntz N. et al. Antibody response to common viruses and human leukocyte antigen-DRB1 in pediatric multiple sclerosis. Mult. Scler. 2013;19(7):891–895. https://dx.doi.org/10.1177%2F1352458512469693

15. Najafipoor A., Roghanian R., Zarkesh-Esfahani S.H., Bouzari M., Etemadifar M. The beneficial effects of vitamin D3 on reducing antibody titers against Epstein–Barr virus in multiple sclerosis patients. Cell. Immunol. 2015;294(1):9–12. https://doi.org/10.1016/j.cellimm.2015.01.009

16. Røsjø E., Lossius A., Abdelmagid N., Lindstrøm J.C., Kampman M.T., Jørgensen L. et al. Effect of high-dose vitamin D3 supplementation on antibody responses against Epstein–Barr virus in relapsing-remitting multiple sclerosis. Mult. Scler. 2017;23(3): 395–402. https://doi.org/10.1177%2F1352458516654310

17. Polman C.H., Reingold S.C., Banwell B., Clanet M., Cohen J.A., Filippi M. et al. Diagnostic criteria for multiple sclerosis: 2010 revisions to the McDonald criteria. Ann. Neurol. 2011;69(2): 292–302. https://dx.doi.org/10.1002%2Fana.22366

18. Kurtzke J.F. Rating neurologic impairment in multiple sclerosis: an expanded disability status scale (EDSS). Neurol. 1983;33(11): 1444–1452. https://doi.org/10.1212/WNL.33.11.1444

19. Thacker E.L., Mirzaei F., Ascherio A. Infectious mononucleosis and risk for multiple sclerosis: a meta-analysis. Ann. Neurol. 2006;59(3):499–503. https://doi.org/10.1002/ana.20820

20. Belbasis L., Bellou V., Evangelou E., Ioannidis J.P., Tzoulaki I. Environmental risk factors and multiple sclerosis: an umbrella review of systematic reviews and meta-analyses. Lancet Neurol. 2015;14(3):263–273. https://doi.org/10.1016/S1474–4422(14)70267–4

21. Endriz J., Ho P.P., Steinman L. Time correlation between mononucleosis and initial symptoms of MS. Neurol. Neuroimmunol. Neuroinflamm. 2017;4(3):e308. https://doi.org/10.1212/NXI.0000000000000308

22. Niller H.H., Bauer G. Epstein–Barr Virus: Clinical Diagnostics. Methods Mol. Biol. 2017;1532: 33–55. https://doi.org/10.1007/978–1–4939–6655–4_2

23. Moss D.J., Burrows S.R., Silins S.L., Misko I., Khanna R. The immunology of Epstein–Barr virus infection. Philos. Trans. R. Soc. Lond. B. Biol. Sci. 2001;356(1408):475–488. https://doi.org/10.1098/rstb.2000.0784

24. Hassani A., Corboy J.R., Al-Salam S., Khan G. Epstein–Barr virus is present in the brain of most cases of multiple sclerosis and may engage more than just B cells. PLoS One. 2018;13(2): e0192109. https://dx.doi.org/10.1371%2Fjournal.pone.0192109

25. Ascherio A., Munger K.L., Lennette E.T., Spiegelman D., Hernan M.A., Olek M.J. et al. Epstein–Вarr virus antibodies and risk of multiple sclerosis: A prospective study. JAMA. 2001;286(24):3083–3088. https://doi.org/10.1001/jama.286.24.3083

26. Sundstrom P., Juto P., Wadell G., Hallmans G., Svenningsson A., Nyströmet L. еt al. An altered immune response to Epstein– Вarr virus in multiple sclerosis: A prospective study. Neurology. 2004;62(12):2277–2282. https://doi.org/10.1212/01.wnl.0000130496.51156.d7

27. DeLorenze G.N., Munger K.L., Lennette E.T., Orentreich N., Vogelman J.H., Ascherio A. Epstein–Вarr virus and multiple sclerosis: Evidence of association from a prospective study with long-term follow-up. Arch. Neurol. 2006;63(6):839–844. https://doi.org/10.1001/archneur.63.6.noc50328

28. Смагина И.В., Ельчанинова С.А., Золовкина А.Г., Игнатова Ю.Н., Кудрявцева Е.А. Генетические факторы риска рассеянного склероза в популяции Алтайского края. Журнал неврологии и психиатрии им. С.С. Корсакова. 2011;111(5): 42–45.

29. Sundström P., Juto P., Wadell G., Hallmans G., Svenningsson A., Nyström L. et al. An altered immune response to Epstein–Barr virus in multiple sclerosis: a prospective study. Neurology. 2004;62(12):2277–2282. https://doi.org/10.1212/01.wnl.0000130496.51156.d7

30. Wergeland S., Myhr K.M., Løken-Amsrud K., Beiske A.G., Bjerve K.S., Hovdal H. et al. Vitamin D, HLA-DRB1 and Epstein–Barr virus antibody levels in a prospective cohort of multiple sclerosis patients. Eur. J. Neurol. 2016;23(6):1064–1070. https://doi.org/10.1111/ene.12986

31. Salzer J., Nyström M., Hallmans G., Stenlund H., Wadell G., Sundström P. Epstein–Barr virus antibodies and vitamin D in prospective multiple sclerosis biobank samples. Mult. Scler. 2013;19(12):1587–1591. https://doi.org/10.1177/1352458513483888

32. Ramien C., Pachnio A., Sisay S., Begum J., Leese A., Disanto G. et al. Hypovitaminosis-D and EBV: no interdependence between two MS risk factors in a healthy young UK autumn cohort. Mult. Scler. 2014;May;20(6):751–3. https://doi.org/10.1177/1352458513509507

33. Wandinger K-P., Jabs W., Siekhaus A., Bubel S., Trillenberg P., Wagner H-J. et al. Association between clinical disease activity and Epstein–Barr virus reactivation in MS. Neurology. 2000;55: 178–184. https://doi.org/10.1212/wnl.55.2.178

34. Pohl D. Epstein–Вarr virus and multiple sclerosis. J. Neurol. Sci. 2009;286(1–2): 62–64. https://doi.org/10.1016/j.jns.2009.03.028

35. Otto C., Hofmann J., Ruprecht K. Antibody producing B lineage cells invade the central nervous system predominantly at the time of and triggered by acute Epstein–Barr virus infection: A hypothesis on the origin of intrathecal immunoglobulin synthesis in multiple sclerosis. Med. Hypotheses. 2016;91:09–113. https://doi.org/10.1007/s00415–017–8656–z

36. Hassani A., Corboy J.R., Al-Salam S., Khan G. Epstein– Barr virus is present in the brain of most cases of multiple sclerosis and may engage more than just B cells. PLoS One. 2018;13(2):e0192109. https://dx.doi.org/10.1371%2Fjournal.pone.0192109

37. Pender M.P., Burrows S.R. Epstein–Barr virus and multiple sclerosis: potential opportunities for immunotherapy. Clin. Transl. Immunology. 2014;3(10):e27. https://doi.org/10.1038/cti.2014.25


Рецензия

Для цитирования:


Смагина И.В., Ельчанинова Е.Ю. Серологические маркеры Эпштейна–Барр вирусной инфекции у больных педиатрическим рассеянным склерозом. Российский неврологический журнал. 2019;24(5):38-45.

For citation:


Smagina I.V., Elchaninova E.Yu. Serologic markers of Еpstein-Вarr virus infection in patients with pediatric multiple sclerosis. Russian neurological journal. 2019;24(5):38-45. (In Russ.)

Просмотров: 497


Creative Commons License
Контент доступен под лицензией Creative Commons Attribution 4.0 License.


ISSN 2658-7947 (Print)
ISSN 2686-7192 (Online)