Preview

Russian neurological journal

Advanced search

Assessment of progression of Parkinson’s disease using magnetic resonance morphometry

https://doi.org/10.30629/2658-7947-2022-27-4-37-43

Abstract

Parkinson’s disease (PD) is the second most common neurodegenerative disease in the world, however, structural changes in the brain at different stages and the associated pathophysiological mechanisms remain unclear.
Objective: to study MR-morphometric changes in the cerebral cortex in the early and advanced stages of PD in comparison with the control group.
Material and methods. 88 patients with PD were examined (II stage of the disease — 42 people, III stage — 46 people according to the Hoehn–Yahr scale). The control group consisted of 35 people who did not differ in sex and age with initial manifestations of cerebrovascular insufficiency. All groups included in the study underwent a neurological examination, as well as magnetic resonance imaging of the brain on a Philips Achieva 3.0T apparatus, followed by post-processing processing of the T1 gradient echo images obtained using FreeSurfer 6.0 software.
Results. In patients with stage II PD, compared with the control group, a significant decrease in the thickness of the cortex was found in the gyrus of the precuneus (p = 0.014) of the lateral part of the superior temporal gyrus, inferior frontal gyrus, postcentral sulcus, superior temporal sulcus, which progressed during the transition to the third the stage of the disease and can serve as a marker of the progression of the neurodegenerative process.
Conclusion. A morphometric study of the cerebral cortex in PD makes it possible to clarify some links in the pathogenesis of the formation, including dopamine-independent symptoms of the disease.

About the Authors

I. A. Vlasova
Military Medical Academy of S.M. Kirov; North-Western District Scientific and Clinical Center named after L.G. Sokolov Federal Medical and Biological Agency
Russian Federation

Saint Petersburg



A. G. Trufanov
Military Medical Academy of S.M. Kirov
Russian Federation

Trufanov Artem G.

Saint Petersburg



A. B. Buriak
Military Medical Academy of S.M. Kirov; North-Western State Medical University named after I.I. Mechnikov
Russian Federation

Saint Petersburg



E. V. Kuznetsova
Military Medical Academy of S.M. Kirov
Russian Federation

Saint Petersburg



M. M. Odinak
Military Medical Academy of S.M. Kirov
Russian Federation

Saint Petersburg



I. V. Litvinenko
Military Medical Academy of S.M. Kirov
Russian Federation

Saint Petersburg



References

1. Kalia L.V., Lang A.E. Parkinson’s disease. Lancet. 2015;386(9996):896–912. https://doi.org/10.1016/S0140-6736(14)61393-3

2. Levin O.S., Fedorova N.V. Parkinson’s disease. 5th ed. Moscow: MEDpress-inform, 2015:384. (In Russ.).

3. Tanner C.M., Goldman S.M. Epidemiology of Parkinson’s disease. Neurol clinics. 1996;14(2):317–335. https://doi.org/10.1016/S0733-8619(05)70259-0

4. Mak E., Su L., Williams G.B., Firbank M.J., Lawson R.A., Yarnall A.J. et al. Baseline and longitudinal grey matter changes in newly diagnosed Parkinson’s disease: ICICLE-PD study. Brain. 2015;138(Pt.10):2974–2986. https://doi.org/10.1093/brain/awv211

5. Zarei M., Ibarretxe-Bilbao N., Compta Y., Hough M., Junque C., Bargallo N., Tolosa E. et al. Cortical Thinning Is Associated with Disease Stages and Dementia in Parkinson’s Disease. J Neurol Neurosurg Psychiatry. 2013:84(8):875–881. http://dx.doi.org/10.1136/jnnp-2012-304126

6. Agosta. F, Canu E., Stojković T., Pievani M., Tomić A., Sarro L. et al. The topography of brain damage at different stages of Parkinson’s disease. Hum brain mapp. 2013;34(11):2798–2807. DOI: 10.1002/hbm.22101.

7. Litvinenko I.V., Odinak M.M., Trufanov A.G. Parkinson’s disease and Parkinsonism syndromes: a textbook. Saint Petersburg: ALBI-SPb., 2012:80. (In Russ.).

8. Pan P.L., Song W., Shang H.F. Voxel-wise meta-analysis of gray matter abnormalities in idiopathic Parkinson’s disease. Eur J Neurol. 2012;19(2):199–206. https://doi.org/10.1111/j.1468-1331.2011.03474.x

9. Li X., Xing Yu., Schwarz S.T., Auer D.P. Limbic grey matter changes in early Parkinson’s disease. Hum brain mapp. 2017;38(7):3566–3578. https://doi.org/10.1002/hbm.23610

10. Litvinenko I.V., Odinak M.M., Sologub O.S., Mogilnaya V.I., Shmeleva V.M., Sakharovskaya A.A. Hyperhomocysteinemia in Parkinson’s disease — a new variant of complications of therapy or a specific biochemical marker of diseases? Annals of Clinical and Experimental Neurology. 2008;2(2):13–17. (In Russ.). https://annalynevrologii.com/journal/pathID/article/view/408/305

11. Lees A., Hardy J., Revesz T. Parkinson’s disease. Lancet. 2009;373:2055–2066. https://doi.org/10.1016/S0140-6736(09)60492-X

12. Hoehn M.M., Yahr M.D. Parkinsonism: Onset, Progression and Mortality. Neurology.1967;17(5):427–442. https://doi.org/10.1212/WNL.17.5.427

13. Fischl B. FreeSurfer. NeuroImage. 2012;62(2):774–781. https://doi.org/10.1016/j.neuroimage.2012.01.021

14. Blair J.C., Barrett M.J., Patrie J., Flanigan J.L., Sperling S.A., Elias W.J., Druzgal T.J. Brain MRI Reveals Ascending Atrophy in Parkinson’s Disease Across Severity. Front Neurol. 2019;10:1329. https://doi.org/10.3389/fneur.2019.01329

15. Wu T., Ma Y., Zheng Z., Peng S., Wu X., Eidelberg D., Chan P. Parkinson’s disease–related spatial covariance pattern identified with resting-state functional MRI. J. Cereb. Blood Flow Metab. 2015;35(11):1764–1770. https://doi.org/10.1038/jcbfm.2015.118

16. Litvinenko I.V., Odinak M.M., Shatova A.V., Sologub O.S. The structure of cognitive impairment at different stages of Parkinson’s disease. Bulletin of the Russian Military Medical Academy. 2007;3(19):43–49. (In Russ.).

17. Wenderoth N., Debaere F., Sunaert S., Swinnen S.P. The role of anterior cingulate cortex and precuneus in the coordination of motor behaviour. Eur. J. Neurosci. 2005;22(1):235–246. https://doi.org/10.1111/j.1460-9568.2005.04176.x

18. Gescheidt T., Bares M. Impulse Control Disorders in Patients with Parkinson’s Disease. Acta neurol. Belg. 2011;111(1):3–9. https://www.researchgate.net/publication/326209083_Impulse_control_and_related_disorders_in_Parkinson’s_disease

19. Vilas D., Pont-Sunyer C., Tolosa E. Impulse control disorders in Parkinson’s disease. Parkinsonism relat disord. 2012;18. Suppl.1:S80–84. https://doi.org/10.1016/S1353-8020(11)70026-8

20. Rinne J.O., Portin R., Ruottinen H., Nurmi E., Bergman J., Haaparanta M., Solin O. Cognitive impairment and the brain dopaminergic system in Parkinson disease: [18F] fluorodopa positron emission tomographic study. Arch neurol. 2000;57(4):470–475. https://doi.org/10.1001/archneur.57.4.470

21. Buryak A.B., Trufanov A.G., Rashidova S.N., Efimtsev A.Yu., Kuznetsova E.V., Odinak M.M., Litvinenko I.V. The effect of iron accumulation in the basal ganglia on the functionality of the white matter of the brain in patients at the early and advanced stages of Parkinson’s disease. breast cancer. RMJ. Medical review. 2021;5(10):623–629. (In Russ.). https://doi.org/10.32364/2587-6821-2021-5-10623-629

22. Jaywant A., Shiffrar M., Roy S., Cronin-Golomb A. Impaired perception of biological motion in Parkinson’s disease. Neuropsychology. 2016;30(6):720–730. https://doi.org/10.1037/neu0000276


Review

For citations:


Vlasova I.A., Trufanov A.G., Buriak A.B., Kuznetsova E.V., Odinak M.M., Litvinenko I.V. Assessment of progression of Parkinson’s disease using magnetic resonance morphometry. Russian neurological journal. 2022;27(4):37-43. (In Russ.) https://doi.org/10.30629/2658-7947-2022-27-4-37-43

Views: 404


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2658-7947 (Print)
ISSN 2686-7192 (Online)