Preview

Russian neurological journal

Advanced search

Оn the relationship of neurodergenerative diseases with air pollution by particulate matter

https://doi.org/10.30629/2658-7947-2022-27-4-5-15

Abstract

The review highlights the current understanding of the relationship between particulate matter (PM) in air pollution and the risk of neurodegenerative diseases (NDDs). For this purpose, materials from articles indexed in the PubMed and RSCI databases were used. The results of the short-term and long-term effects of PM on the occurrence and progression of NDDs depending on their size, chemical composition and age of the subjects are considered. PMs with an aerodynamic diameter of ≤ 2.5 microns are recognized as the most dangerous. Epidemiological, clinical and experimental studies have confirmed that air pollution with PM, especially those containing metals, is one of the risk factors for NDDs. Hypotheses of the pathogenesis of the most common NDDs, Alzheimer’s and Parkinson’s diseases, are discussed. Unfortunately, none of the hypotheses provides a clear description of the role of PMs in the pathogenesis of NDDs, in particular, at the molecular or cellular level. Systematized scientific data, especially in the form of formalized descriptions, contribute to the understanding of the pathogenesis and can be used in practical medicine to assess the risk of occurrence, early diagnosis, prognosis and increase the effectiveness of treatment of patients with NDDs.

About the Authors

A. F. Kolpakova
Federal Research Center for Information and Computational Technologies
Russian Federation

Kolpakova Alla Fedorovna — Doctor of Medical Sciences, Professor, Leading Researcher of the Laboratory for Modeling Geoecological Systems (jointly with IWEP SORAN)

Novosibirsk



R. N. Sharipov
Federal Research Center for Information and Computational Technologies; Sirius University of Science and Technology; Limited liability company BIOSOFT.RU; Novosibirsk State University
Russian Federation

Novosibirsk
Sochi



O. A. Volkova
Limited liability company BIOSOFT.RU
Russian Federation

Novosibirsk



References

1. Bazyar J., Pourvakhshoori N., Khankeh H., Farrokhi M., Delshad V., Rajabi E. A comprehensive evaluation of the association between ambient air pollution and adverse health outcomes of major organ systems: a systematic review with a worldwide approach. Environ. Sci. Pollut. Res. Int. 2019;26(13):12648–12661. https://doi.org/10.1007/s11356-019-04874-z

2. World Health Organization: Ambient (outdoor) air quality and health. 2018. https://www.who.int/en/news-room/fact-sheets/detail/ambient-(outdoor)-air-quality-and-health (09 Jun 2021)

3. 2021 Alzheimer’s disease facts and figures. Alzheimers Dement. 2021;17(3):391–460. https://doi.org/10.1002/alz.12068

4. Stefanova N.A., Kolosova N.G. Evolution of understanding of Alzheimer’s disease pathogenesis. Moscow University Biology Series Bulletin. 2016;(1):6–13. (In Russian). https://vestnik-biomsu.elpub.ru/jour/article/view/290/283# (09 Jun 2021)

5. Kulikova O.I., Fedorova T.N., Kuznetsov V.I., Orlova V.S. Exogenous Factors of Parkinson’s Disease Development. Human ecology (Ecologiya cheloveka). 2019;1:34–39. (In Russian). https://cyberleninka.ru/article/n/ekzogennye-faktory-riska-vozniknoveniya-bolezni-parkinsona (09 Jun 2021)

6. Tysnes O.B, Storstein A.J. Epidemiology of Parkinson’s disease. Neural Transm (Vienna). 2017;124(8):901–905. https://doi.org/10.1007/s00702-017-1686-y

7. Razdorskaya V.V., Voskresenskaya O.N., Yudina, G.K. Parkinson’s disease in Russia: prevalence and incidence. Saratov journal of medical scientific research. 2016;12(3):379–384. (In Russian). http://ssmj.ru/2016/3/379 (09 Jun 2021)

8. Kotvitska A.A., Prokopenko O.S. The study of the prevalence and incidence of Parkinson’s disease in different world regions. Social pharmacy in health care. 2017;3(4):76–82. https://www.elibrary.ru/download/elibrary_32265598_95668313.pdf (09 Jun 2021)

9. Xu X., Ha S.U., Basnet R. A review of epidemiological research on adverse neurological effects of exposure to ambient air pollution. Front. Public Health. 2016;4:157. https://doi.org/10.3389/fpubh.2016.00157

10. Heusinkveld H.J., Wahle T., Campbell A., Westerink R.H.S., Tran L., Johnston H. et al. Neurodegenerative and neurological disorders by small inhaled particles. Neurotoxicology. 2016;56:94–106. https://doi.org/10.1016/j.neuro.2016.07.007

11. Fu P., Guo X., Cheung F.M.H., Yung K.K.L. The association between PM 2.5 exposure and neurological disorders: A systematic review and meta-analysis. Sci. Total Environ. 2019;655:1240–1248. https://doi.org/10.1016/j.scitotenv.2018.11.218

12. Jantzen K., Møller P., Karottki D.G., Olsen Y., Bekö G., Clausen G. et al. Exposure to ultrafine particles, intracellular production of reactive oxygen species in leukocytes and altered levels of endothelial progenitor cells. Toxicology. 2016;359–360:11–18. https://doi.org/10.1016/j.tox.2016.06.007

13. Traboulsi H., Guerrina N., Iu M, Maysinger D., Ariya P., Baglole C.J. Inhaled pollutants: The molecular scene behind respiratory and systemic diseases associated with ultrafine particulate matter. Int. J. Mol. Sci. 2017;18(2):243. https://doi.org/10.3390/ijms18020243

14. Jia Y.Y., Wang Q., Liu T. Toxicity research of PM2.5 compositions in vitro. Int. J. Environ. Res. Public Health. 2017;14(3):232. https://doi.org/10.3390/ijerph14030232

15. Katola V.M., Komogorceva V.E. Dust: sources of formation, its general characteristics and dust diseases (brief review). Bulletin of physiology and pathology of respiration. 2018;(67):111–116. (In Russian). https://doi.org/10.12737/article_5a9f2eaf492cf9.67393066

16. Liu L., Urch B., Szyszkowicz M., Evans G., Speck M., Van Huang A. et al. Metals and oxidative potential in urban particulate matter influence systemic inflammatory and neural biomarkers: A controlled exposure study. Environ. Int. 2018;121(2):1331–1340. https://doi.org/10.1016/j.envint.2018.10.055

17. Calderón-Garcidueñas L., Leray E., Heydarpour P., TorresJardón R., Reis J. Air pollution, a rising environmental risk factor for cognition, neuroinflammation and neurodegeneration: The clinical impact on children and beyond. Rev. Neurol. (Paris). 2016;172(1):69–80. https://doi.org/10.1016/j.neurol.2015.10.008

18. Tsai T.L., Lin Y.T., Hwang B.F., Nakayama S.F., Tsai C.H., Sun X.L. et al. Fine particulate matter is a potential determinant of Alzheimer’s disease: A systemic review and meta-analysis. Environ. Res. 2019;177:108638. https://doi.org/10.1016/j.envres.2019.108638

19. Chen J.C., Wang X., Wellenius G.A., Serre M.L., Driscoll I., Casanova R. Ambient air pollution. Ann. Neurol. 2015;78(3):466–476. doi:10.1002/ana.24460

20. Power M.C., Lamichhane A.P., Liao D., Xu X., Jack C.R., Gottesman R.F. et al. The association of long-term exposure to particulate matter air pollution with brain MRI findings: the ARIC study. Environ. Health Perspect. 2018;126(2):027009. https://doi.org/10.1289/EHP2152

21. Hedges D.W., Erickson L.D., Kunzelman J., Brown B.L, Gale S.D. Association between exposure to air pollution and hippocampal volume in adults in the UK Biobank. Neurotoxicology. 2019;74:108–120. https://doi.org/10.1016/j.neuro.2019.06.005

22. Hedges D.W., Erickson L.D., Gale S.D., Anderson J.E., Brown B.L. Association between exposure to air pollution and thalamus volume in adults: A cross-sectional study. PLoS One. 2020;15(3):e0230829. https://doi.org/10.1371/journal.pone.0230829

23. Shou Y., Huang Y., Zhu X., Liu C., Hu Y., Wang H. A review of the possible associations between ambient PM2.5 exposures and the development of Alzheimer’s disease. Ecotoxicol. Environ. Saf. 2019;174:344–352. https://doi.org/10.1016/j.ecoenv.2019.02.086

24. Wang W., Zhou J., Chen M., Huang X., Xie X., Li W. et al. Exposure to concentrated ambient PM 2.5 alters the composition of gut microbiota in a murine model. Part. Fibre Toxicol. 2018;15:17. https://doi.org/10.1186/s12989-018-0252-6

25. González-Maciel A., Reynoso-Robles R., Torres-Jardón R., Mukherjee P.S., Calderón-Garcidueñas L. Combustion-derived nanoparticles in key brain target cells and organelles in young urbanites: culprit hidden in plain sight in Alzheimer’s disease development. J. Alzheim. Dis. 2017;59:(1):189–208. https://doi.org/10.3233/JAD-170012

26. Kreyling W.G. Discovery of unique and ENMspecific pathophysiologic pathways: Comparison of the translocation of inhaled iridium nanoparticles from nasal epithelium versus alveolar epithelium towards the brain of rats. Toxicol. Appl. Pharmocol. 2016;299:41–46. https://doi.org/10.1016/j.taap.2016.02.004

27. Romashchenko A.V., Sharapova M.B., Morozova K.N., Kiseleva E.V., Cooper K.E., Petrovsky D.V. The role of olfactory transport in the penetration of manganese oxide nanoparticles from the bloodstream into the brain. Vavilov journal of genetics and breeding. 2019;23(4):482–488. (In Russian). https://doi.org/10.18699/VJ19.517

28. Ilango S.D., Chen H., Hystad P., van Donkelaar A., Kwong J.C., Tu K. et al. The role of cardiovascular disease in the relationship between air pollution and incident dementia: a population-based cohort study. Int. J. Epidemiol. 2020;49(1):36–44. https://doi.org/10.1093/ije/dyz154

29. Kioumourtzoglou M.A., Schwartz J.D., Weisskopf M.G, Melly S.J., Wang Y., Dominici F., Zanobetti A. Long-term PM2.5 exposure and neurological hospital admissions in the Northeastern United States. Environ. Health Perspect. 2016;124(1):23–29. https://doi.org.10.1289/ehp.1408973

30. Lee H., Myung W., Kim D.K., Kim S.E., Kim C.T., Kim H. Short-term air pollution exposure aggravates Parkinson’s disease in a population-based cohort. Sci. Rep. 2017;7:44741. https://doi.org/10.1038/srep44741

31. Cliff R., Curran J., Hirota J.A., Brauer M., Feldman H., Carlsten C. Effect of diesel exhaust inhalation on blood markers of inflammation and neurotoxicity: a controlled, blinded crossover study. Inhal. Toxicol. 2016;28(3):145–153. https://doi.org/10.3109/08958378.2016.1145770

32. Toro R., Downward G.S., van der Mark M., Brouwer M., Huss A., Peters S. et al. Parkinson’s disease and long-term exposure to outdoor air pollution: A matched case-control study in the Netherlands. Environ. Int. 2019;129:28–34. https://doi.org/10.1016/j.envint.2019.04.069

33. Lawal A.O. Air particulate matter induced oxidative stress and inflammation in cardiovascular disease and atherosclerosis: The role of Nrf2 and AhR-mediated pathways. Toxicol. Lett. 2017;70:88–95. https://doi.org/10.1016/j.toxlet.2017.01.017

34. Stone V., Miller M.R., Clift MJD., Elder A., Mills L., Møller P. et al. Nanomaterials versus ambient ultrafine particles: an opportunity to exchange toxicology knowledge. Environ. Health Perspect. 2017;125(10):10602. https://doi.org/10.1289/EHP424

35. Hajipour S., Farbood Y., Gharib-Naseri M.K., Goudarzi G., Rashno M., Maleki H. et al. Exposure to ambient dusty particulate matter impairs spatial memory and hippocampal LTP by increasing brain inflammation and oxidative stress in rats. Life Sci. 2020;242:117210. https://doi.org/10.1016/j.lfs.2019.117210

36. Li B., Guo L., Ku T., Chen M., Li G., Sang N. PM 2.5 exposure stimulates COX-2-mediated excitatory synaptic transmission via ROS-NF-κB pathway. Chemosphere. 2018;190:124–134. https://doi.org/10.1016/j.chemosphere.2017.09.098

37. Chen X., Liu S., Zhang W., Wu C., Liu H, Zhang F. et al. Nrf2 deficiency exacerbates PM2.5 -induced olfactory bulb injury. Biochem. Biophys. Res. Commun. 2018;505(4):1154–1160. https://doi.org/10.1016/j.bbrc.2018.10.057

38. Fagundes L.S, Fleck A.S., Zanchi A.C., Saldiva P.H., Rhoden C.R. Direct contact with particulate matter increases oxidative stress in different brain structures. Inhal. Toxicol. 2015;27(10):462–467. https://doi.org/10.3109/08958378.2015.1060278

39. Kovalenko V.R., Khabarova E.A., Rzaev D.A, Medvedev S.P. Cellular models, genomic technologies and clinical practice: a synthesis of knowledge for the study of the mechanisms, diagnostics and treatment of Parkinson’s disease. Genes and cells. 2017;12(2):11–28. (In Russian). https://doi.org/10.23868/201707012

40. Andrade-Oliva M.D., Aztatzi-Aguilar O.G., García-Sierra F., De Vizcaya-Ruiz A., Arias-Montaño J.A. Effect of in vivo exposure to ambient fine particles (PM 2.5) on the density of dopamine D 2-like receptors and dopamine-induced [35S]-GTPγS binding in rat prefrontal cortex and striatum membranes. Environ. Toxicol. Pharmacol. 2018;60:58–65. https://doi.org/10.1016/j.etap.2018.04.001

41. Wang L., Wei L.Y., Ding R., Feng Y., Li D., Li C. et al. Predisposition to Alzheimer’s and age-related brain pathologies by PM2.5 exposure: perspective on the roles of oxidative stress and TRPM2 channel. Front. Physiol. 2020;11:155. https://doi.org/10.3389/fphys.2020.00155

42. Wei H., Feng Y., Liang F., Cheng W., Wu X., Zhou R., Wang Y. Role of oxidative stress and DNA hydroxymethylation in the neurotoxicity of fine particulate matter. Toxicology. 2017;380:94–103. https://doi.org/10.1016/j.tox.2017.01.017

43. Wang B.R., Shi J.Q., Ge N.N., Ou Z., Tian Y.Y., Jiang T. et al. PM2.5 exposure aggravates oligomeric amyloid beta-induced neuronal injury and promotes NLRP3 inflammasome activation in an in vitro model of Alzheimer’s disease. J. Neuroinflammation. 2018;15(1):132. https://doi.org/10.1186/s12974-018-1178-5

44. López González I., Garcia-Esparcia P., Llorens F., Ferrer I. Genetic and transcriptomic profiles of inflammation in neurodegenerative diseases: Alzheimer, Parkinson, Creutzfeldt-Jakob and tauopathies. Int. J. Mol. Sci. 2016;17(2):206. https://doi.org/10.3390/ijms17020206

45. Kulick E.R., Elkind MSV., Boehme A.K., Joyce N.R., Schupf N., Kaufman J.D. et al. Long-term exposure to ambient air pollution, APOE-ε4 status, and cognitive decline in a cohort of older adults in northern Manhattan. Environ. Int. 2020;136:105440. https://doi.org/10.1016/j.envint.2019.105440

46. Litvinenko I.V., Emelin A.Yu., Lobzin V.Yu., Kolmakova K.A., Naumov K.M., Lupanov I.A. et al. The amyloid hypothesis of Alzheimer’s disease: past and present, hopes and disappointments. Neurology, neuropsychiatry, psychosomatics. 2019;11(3):4–10. (In Russian). https://doi.org/10.14412/2074-2711-2019-3-4-10

47. Kilian J., Kitazawa M. The emerging risk of exposure to air pollution on cognitive decline and Alzheimer’s disease — Evidence from epidemiological and animal studies. Biomed. J. 2018;41(3):141–162. https://doi.org/10.1016/j.bj.2018.06.00

48. Mortamais M., Pujol J., Martínez-Vilavella G., Fenoll R., Reynes C., Sabatier R. et al. Effects of prenatal exposure to particulate matter air pollution on corpus callosum and behavioral problems in children. Environ. Res. 2019;178:108734. https://doi.org/10.1016/j.envres.2019.108734

49. Sunyer J., Dadvand P. Prenatal brain development as a target for urban air pollution. Basic Clin. Pharmacol. Toxicol. 2019;125(Suppl.3):81–88. https://doi.org/10.1111/bcpt.13226

50. Klocke C., Allen J.L., Sobolewski M., Mayer-Pröschel M., Blum J.L., Lauterstein D. et al. Neuropathological consequences of gestational exposure to concentrated ambient fine and ultrafine particles in the mouse. Toxicol. Sci. 2017;156(2):492–508. https://doi.org/10.1093/toxsci/kfx010

51. Zhang T., Zheng X., Wang X., Zhao H., Wang T., Zhang H. et al. Maternal exposure to PM 2.5 during pregnancy induces impaired development of cerebral cortex in mice offspring. Int. J. Mol. Sci. 2018;19(1):257. https://doi.org/10.3390/ijms19010257

52. Zheng X., Wang X., Wang T., Zhang H., Wu H., Zhang C. et al. Gestational exposure to particulate matter 2.5 (PM2.5) leads to spatial memory dysfunction and neurodevelopmental impairment in hippocampus of mice offspring. Front. Neurosci. 2019;12:1000. https://doi.org/10.3389/fnins.2018.01000

53. Kulas J.A., Hettwer J.V., Sohrabi M., Melvin J.E., Manocha G.D., Puig K.L. et al. In utero exposure to fine particulate matter results in an altered neuroimmune phenotype in adult mice. Environ. Pollut. 2018;241:279–288. https://doi.org/10.1016/j.envpol.2018.05.047

54. Calderón-Garcidueñas L., Reynoso-Robles R., Vargas-Martínez J., Maqueo-Chew A.G., Pérez-Guillé B., Mukherjee P.S. et al. Prefrontal white matter pathology in air pollution exposed Mexico City young urbanites and their potential impact on neurovascular unit dysfunction and the development of Alzheimer’s disease. Environ. Res. 2016;146:404–417. https://doi.org/10.1016/j.envres.2015.12.031

55. González-Maciel A., Reynoso-Robles R., Torres-Jardón R., Mukherjee P.S., Calderón-Garcidueñas L. Combustion-derived nanoparticles in key brain target cells and organelles in young urbanites: culprit hidden in plain sight in Alzheimer’s disease development. J. Alzheim. Dis. 2017;59(1):189–208. https://doi.org/10.3233/JAD-170012

56. Koberskaya N.N. The role of mitochondrial dysfunction in Azheimer’s disease. Medical council. 2019;12:34-40. (In Russian). https://doi.org/10.21518/2079-701X-2019-12-34-40

57. Wang Y., Zhang M., Li Z., Yue J., Xu M., Zhang Y. et al. Fine particulate matter induces mitochondrial dysfunction and oxidative stress in human SH-SY5Y cells. Chemosphere. 2019;218:577–588. https://doi.org/10.1016/j.chemosphere.2018.11.149

58. Gao R., Ku T., Ji X., Zhang Y., Li G., Sang N. Abnormal energy metabolism and tau phosphorylation in the brains of middleaged mice in response to atmospheric PM 2.5 exposure. J. Environ. Sci. (China). 2017;62:145–153. https://doi.org/10.1016/j.jes.2017.06.037

59. Zuev V.A. Immunology theory of Alzheimer disease pathogenesis: facts and hypothesis. Modern problems of science and education. 2019;4. (In Russian). https://doi.org/10.17513/spno.28961

60. Kolpakov F., Akberdin I., Kashapov T., Kiselev L., Kolmykov S., Kondrakhin Y. et al. BioUML: an integrated environment for systems biology and collaborative analysis of biomedical data. Nucleic Acids Res. 2019;47(W1):W225–W233. https://doi.org/10.1093/nar/gkz440


Review

For citations:


Kolpakova A.F., Sharipov R.N., Volkova O.A. Оn the relationship of neurodergenerative diseases with air pollution by particulate matter. Russian neurological journal. 2022;27(4):5-15. (In Russ.) https://doi.org/10.30629/2658-7947-2022-27-4-5-15

Views: 464


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2658-7947 (Print)
ISSN 2686-7192 (Online)