Application of cellular technologies in the treatment of neurological disorders caused by COVID-19 SARS-CoV-2
Abstract
Aim: to systematize the results of studies devoted to the treatment and rehabilitation of patients with neurological consequences of «postcoid syndrome» and with vascular, post-inflammatory and traumatic lesions of the nervous system using adult stem cells.
Materials and methods. A search was carried out for literary sources including those published in peer-reviewed journals indexed in PubMed, Wos, Scopus and RSCI. We analyzed 45 articles on cell technologies and immunotherapy in neurology, of which 39 are included in this review. 72 articles devoted to cell technologies and immunotherapy in neurology were analyzed, of which 63 are included in this review.
Results. The inclusion of stem cells (SC) in rehabilitation programs for patients with various injuries and diseases of the central nervous system is a new, promising direction of research. Possible mechanisms of therapy for spinal cord injury based on the use of adult-type stem cells from the bone marrow, including CD34+, include many aspects. On the background of SC transplantation, damaged nerve cells and surrounding tissues, including neurons and glial cells, can be restored, which helps to ensure the integrity of the nerve conduction pathway and, thus, restore nerve function. SС therapy can suppress genes involved in inflammation and apoptosis, as well as activate genes with neuroprotective action, thereby protecting spinal neurons from secondary damage. The introduction of autoCD34+ SC will be performed intrathecally by spinal (lumbar) puncture performed in the L2–L3 gap, under local anesthesia with 1% lidocaine solution. The dose of autoCD34+ SC is determined by the content of CD34+ cells and is not less than 1 × 106 CD34+ cells per 1 injection. Autologous hematopoietic stem cells (HSC) obtained from the patient himself do not cause immunological conflicts, and, accordingly, do not require immunosuppressive therapy, unlike donor (allogeneic) and xenogenic cells. Thus, the patient does not experience disturbances in the natural mechanisms of anti-infectious and antitumor control. At the same time, autologous HSCs are relatively easy to obtain and cultivate if necessary, and when using this type of cells, doctors do not face ethical and legislative challenges.
Conclusion. Taking into account the previously obtained data on the effectiveness of the use of autologous HSC SD34+ for the rehabilitation of patients with various types of damage to the nervous system and the universality of pathophysiological mechanisms in the central nervous system, it can be assumed that this area of cell therapy can be used to treat post-COVID-19 syndrome.
About the Authors
I. S. DolgopolovRussian Federation
Tver
M. Yu. Rykov
Russian Federation
Rykov M.Yu. – Doctor of Med. Sci., associate professor
Tver
L. V. Chichanovskaya
Russian Federation
Tver
References
1. Wang F., Kream R.M., Stefano G. Long-Term Respiratory and Neurological Sequelae of COVID-19. Med. Sci. Monit . 2020;26:e928996-1–e928996-10.
2. Bourgonje A.R., Abdulle A.E., Timens W. Angiotensin-converting enzyme 2 (ACE2), SARS-CoV-2 and the pathophysiology of coronavirus disease 2019 (COVID-19). J. Pathol. 2020;251(3):228–48.
3. Wang D., Hu B., Hu C. Сlinical characteristics of 138 hospitalized patients with 2019 novel coronavirus-infected pneumonia in Wuhan, China. JAMA. 2020;323(11):1061–9.
4. Garrigues E., Janvier P., Kherabi Y., Le Bot A., Hamon A., Gouze H. Post-discharge persistent symptoms and health-related quality of life afer hospitalization for COVID-19. J. Infect . 2020;81:e4–e6.
5. Nalbandian A., Sehgal K., Gupta A., Madhavan M.V., McGroder C., Stevens J.S. Post-acute COVID-19 syndrome. Nat Med. 2021;27(4):601–615.
6. Singal C.M.S., Jaiswal P., Seth P. SARS-CoV-2, more than a respiratory virus: Its potential role in neuropathogenesis. ACS Chem Neurosci. 2020;11(13):1887–99.
7. Tian S., Xiong Y., Liu H. Pathological study of the 2019 novel coronavirus disease (COVID-19) through post-mortem core biopsies. Mod. Pathol. 2020;33:1007–14.
8. Stonesifer C., Corey S., Ghanekar S., Diamandis Z., Acosta S.A., Borlongan C.V. Stem cell therapy for abrogating stroke-induced neuroinflammation and relevant secondary cell death mechanisms. Prog. Neurobiol. 2017;158:94–131.
9. Stenudd M., Sabelstrom H., Frisen J. Role of endogenous neural stem cells in spinal cord injury and repair. JAMA Neurology. 2015;72(2):235–237.
10. Gao L., Xu W., Li T. Stem cell therapy: a promising therapeutic method for intracerebral hemorrhage. Cell. Transplantation. 2018;27(12):1809–1824.
11. Pezzini A., Padovani A. Lifting the mask on neurological manifestations of COVID-19. Nat. Rev. Neurol. 2020;24:1–9.
12. Barrantes F.J. Central nervous system targets and routes for SARS-CoV-2: Current views and new hypotheses. ACS Chem. Neurosci. 2020;11(18):2793–803.
13. Brann D.H., Tsukahara T., Weinreb C. Non-neuronal expression of SARS-CoV-2 entry genes in the olfactory system suggests mechanisms underlying COVID-19-associated anosmia. Sci. Adv. 2020;6(31) eabc5801.
14. Tsai L.K., Hsieh S.T., Chang Y.C. Neurological manifestations in severe acute respiratory syndrome. Acta Neurol. Taiwan. 2005;14(3):113–19.
15. Abassi Z., Knaney Y., Karram T., Heyman SN. The lung macrophage in SARS-CoV-2 infection: A friend or a foe? Front Immunol. 2020;11:1312.
16. Jose R.J., Manuel A. COVID-19 cytokine storm: The interplay between inflammation and coagulation. Lancet Respir. Med. 2020;8(6):e46–47.
17. Kremer S., Lersy F., de Sèze J. Brain MRI findings in severe COVID-19: A retrospective observational study. Radiology. 2020;16:202222.
18. Aghagoli G., Gallo Marin B., Katchur N.J. Neurological involvement in COVID-19 and potential mechanisms: A review. Neurocrit Care. 2020;13:1–10.
19. Xu Z., Shi L., Wang Y., Zhang J., Huang L., Zhang C. Pathological findings of COVID-19 associated with acute respiratory distress syndrome. Lancet Respir. Med. 2020;8(4):420–422.
20. Mao L., Jin H., Wang M., Hu Y., Chen S., He Q. Neurologic manifestations of hospitalized patients with coronavirus disease 2019 in Wuhan, China. JAMA Neurol. 2020;77(6):1–9.
21. Guan W., Ni Z., Hu Y., Liang W.H., Ou C.Q., He J.X. Clinical characteristics of coronavirus disease 2019 in China. N. Engl. J. Med. 2020;382(18):1708–1720.
22. Moriguchi T., Harii N., Goto J., Harada D., Sugawara H., Takamino J., Ueno M. et al. A first case of meningitis/encephalitis associated with SARS-Coronavirus-2. Int. J. Infect. Dis . 2020;94:55–58.
23. Paniz-Mondolfi A., Bryce C., Grimes Z., Gordon R.E., Reidy J., Lednicky J., Sordillo E.M., Fowkes M. Central nervous system involvement by severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2). J. Med. Virol. 2020;92(7):699–702.
24. Puelles V.G., Lütgehetmann M., Lindenmeyer M.T., Sperhake J.P., Wong M.N., Allweiss L. al. Multiorgan and Renal Tropism of SARS-CoV-2. N. Engl. J. Med . 2020;383(6):590–592.
25. Desforges M., Le Coupanec A., Stodola J.K., Meessen-Pinard M., Talbot P.J. Human coronaviruses: viral and cellular factors involved in neuroinvasiveness and neuropathogenesis. Virus Res. 2014;194():145–58.
26. Swanson P.A. 2nd, McGavern D.B. Viral diseases of the central nervous system. Curr. Opin. Virol. 2015;11():44–54.
27. van Riel D., Verdijk R., Kuiken T. The olfactory nerve: a shortcut for influenza and other viral diseases into the central nervous system. J. Pathol. 2015;235(2):277–87.
28. Netland J., Meyerholz D.K., Moore S., Cassell M., Perlman S. Severe acute respiratory syndrome coronavirus infection causes neuronal death in the absence of encephalitis in mice transgenic for human ACE2. J. Virol. 2008;82(15):7264–75.
29. Li W., Li M., Ou G. COVID-19, cilia, and smell. FEBS J. 2020;287:3672–3676. doi: 10.1111/febs.15491
30. Hoffmann M. SARS-CoV-2 cell entry depends on ACE2 and TMPRSS2 and is blocked by a clinically proven protease inhibitor. Cell. 2020;181:271–280.e8. doi: 10.1016/j.cell.2020.02.052
31. Sungnak W. SARS-CoV-2 entry factors are highly expressed in nasal epithelial cells together with innate immune genes. Nat. Med. 2020;26:681–687. doi: 10.1038/s41591-020-0868-6
32. Bryche B. Massive transient damage of the olfactory epithelium associated with infection of sustentacular cells by SARS-CoV-2 in golden Syrian hamsters. Brain Behav. Immun. 2020. doi: 10.1016/j.bbi.2020.06.032
33. Xu J., Lazartigues E. Expression of ACE2 in human neurons supports the neuro-invasive potential of COVID-19 virus. Cell. Mol. Neurobiol. 2020;4:1–5.
34. Zhang Bao-Zhong, Chu Hin, Han Shuo, Shuai Huiping, Deng Jian, Hu Ye-Fan, Gong Hua-Rui, Chak-Yiu Lee Andrew. SARS-CoV-2 infects human neural progenitor cells and brain organoids. Cell. Res. 2020;30(10):928–931.
35. Meinhardt J., Radke J., Dittmayer C., Franz J., Thomas C. et al. Olfactory transmucosal SARS-CoV-2 invasion as a port of central nervous system entry in individuals with COVID-19. Nature Neuroscience. 2021;24:68–175.
36. National Institute for Health and Care excellence. COVID-19 rapid guideline: managing the long-term effects of COVID-19. https://www.nice.org.uk/guidance/ng188 [18 décembre 2020].
37. Editorial. Long COVID: let patients help define long-lasting COVID symptoms. Nature. 2020;586:170.
38. Haute Autorité de santé. Réponses rapides dans le cadre de la COVID-19: symptômes prolongés suite à une COVID-19 de l’adulte — Diagnostic et prise en charge; 2021.
39. Goërtz Y.M.J., Van Herck M., Debressine J.M. Persistent symptoms 3 months after a SARS-CoV-2 infection: the post-COVID-19 syndrome? ERJ Open. Res. 2020;6:00542–2020.
40. Sudre C.H., Murray B., Varsavsky T. Attributes and predictors of long COVID. Nat. Med. 2021;27:626–31.
41. Havervall S., Rosell A., Phillipson M. Symptoms and functional impairment assessed 8 months after mild COVID-19 among health care workers. JAMA. 2021;325:2015–6.
42. Salmon-Ceron D., Slama D., De Broucker T. Clinical, virological and imaging profile in patients with prolonged forms of COVID-19: a cross-sectional study. J. Infect. 2021;82(2): e1–4.
43. Burton C., Fink P., Henningsen P. Functional somatic disorders: discussion paper for a new common classification for research and clinical use. BMC Med. 2020;18:34.
44. Mazza M.G., De Lorenzo R., Conte C. Anxiety and depression in COVID-19 survivors: role of inflammatory and clinical predictors. Brain Behav. Immun. 2020;89:594–600.
45. Huang C., Huang L., Wang Y. 6-month consequences of COVID-19 in patients discharged from hospital: a cohort study. Lancet. 2021;397:220–232.
46. Taquet M., Luciano S., Geddes J.R. Harrison P.J. Bidirectional associations between COVID-19 and psychiatric disorder: retrospective cohort studies of 62 354 COVID-19 cases in the USA. Lancet Psychiatry. 2021;8:130–140.
47. Weissman I.L., Anderson D.J., Gage F. Stem and progenitor cells: origins, phenotypes, lineage commitments, and transdifferentiations. Ann. Rev. Cell Develop. Biol. 2001;17(1):387–403.
48. Lakhan S.E., Kirchgessner A., Hofer M. Inflammatory mechanisms in ischemic stroke: therapeutic approaches. J. Transl. Med. 2009;7:97.
49. Muheremu A., Peng J., Ao Q. Stem cell based therapies for spinal cord injury. Tissue & Cell. 2016;48(4):328–333.
50. De Feo D., Merlini A., Laterza C., Martino G. Neural stem cell transplantation in central nervous system disorders:from cell replacement to neuroprotection. Cur. Opin. Neurol. 2012;25(3):322–333. doi: 10.1097/WCO.0b013e328352ec45
51. Cusimano M., Biziato D., Brambilla E. Transplanted neural stem/precursor cells instruct phagocytes and reduce secondary tissue damage in the injured spinal cord. Brain. 2012;135(2):447–460.
52. Bryukhovetskiy A.S., Bryukhovetskiy I.S. Effectiveness of repeated transplantations of hematopoietic stem cells in spinal cord injury. World J. Transplant. 2015;5 (3):110–128.
53. Divani A.A., Hussain M.S., Magal E., Heary R.F., Qureshi A.I. The use of stem cells’ hematopoietic stimulating factors therapy following spinal cord injury. Ann. Biomedical Engineering. 2007;35(10):1647–1656.
54. Koshizuka S., Okada S., Okawa A. Transplanted hematopoietic stem cells from bone marrow differentiate into neural lineage cells and promote functional recovery after spinal cord injury in mice. J. Neuropathol. Exp. Neurol. 2004;63(1):64–72.
55. Xiong L.L., Liu F., Deng S.K. Transplantation of hematopoietic stem cells promotes functional improvement associated with NT-3-MEK-1 activation in spinal cord-transected rats. Front. Cell. Neuroscience. 2017;11:213.
56. Yoshihara H., Arai F., Hosokawa K., Hagiwara T., Takubo K. Thrombopoietin/MPL signaling regulates hematopoietic stem cell quiescence and interaction with the osteoblastic niche. Cell. Stem. Cell. 2007;1:685–697.
57. Suarez-Monteagudo C., Hernandez-Ramirez P., Alvarez-Gon-zalez L., Garcia-Maeso I., de la Cuetara-Bernal K., Castillo-Diaz L. Autologous bone marrow stem cell neurotransplantation in stroke patients. An open study. Restor. Neurol. Neurosci. 2009;27:151–161.
58. Barbosa da Fonseca L.M., Gutfilen B., Rosado de Castro P.H., Battistella V., Goldenberg R.C., Kasai-Brunswick T. Migration and homing of bone-marrow mononuclear cells in chronic ischemic stroke after intra-arterial injection. Exp. Neurol. 2010;221:122–128.
59. Savitz S.I., Misra V., Kasam M., Juneja H., Cox C.S. Jr., Alderman S. Intravenous autologous bone marrow mononuclear cells for ischemic stroke. Ann. Neurol. 2011;70:59–69.
60. He J., Sussman E., Steinberg G. Revisiting Stem Cell-Based Clinical Trials for Ischemic Stroke. Front Aging. Neurosci. 2020;12:575990. doi: 10.3389/fnagi.2020.575990
61. Prasad K., Sharma A., Garg A., Mohanty S., Bhatnagar S., Johri S. Intravenous autologous bone marrow mononuclear stem cell therapy for ischemic stroke: a multicentric, randomized trial. Stroke. 2014;45:3618–3624.
62. Sharma A., Sane H., Gokulchandran N., Khopkar D., Paranjape A., Sundaram J. Autologous bone marrow mononuclear cells intrathecal transplantation in chronic stroke. Stroke Res. Treat. 2014:234095.
63. Taguchi A., Sakai C., Soma T., Kasahara Y., Stern D, Kajimoto K. Intravenous autologous bone marrow mononuclear cell transplantation for stroke: phase1/2a clinical trial in a homogeneous group of stroke patients. Stem. Cells Dev. 2015;24:2207–2218.
64. Barish M., Herrmann K., Tang Y., Argalian Herculian S., Metz M., Aramburo S. Human neural stem cell biodistribution and predicted tumor coverage by a diffusible therapeutic in a mouse glioma model. Stem. Cells Transl. Med . 2017;6:1522–1532.
65. Takahashi H., Koda M., Hashimoto M. Transplanted peripheral blood stem cells mobilized by granulocyte colony-stimulating factor promoted hindlimb functional recovery after spinal cord injury in mice. Cell. Transplantation. 2016;2:283–292.
66. Fehlings M., Tetreault L., Wilson J. A clinical practice guideline for the management of acute spinal cord injury: introduction, rationale, and scope. Global Spine Journal. 2017;7(Suppl3):84S–94S.
67. Zakerinia M., Kamgarpour A., Nemati H., Zare H.R., Ghasemfar M., Rezvani A.R. Intrathecal autologous bone marrow-derived hematopoietic stem cell therapy in neurological diseases. Int. J. Organ Transplant. Med. 2018;9(4):157–167.
68. Shyu W., Lin S., Chiang M., Su C., Li H. Intracerebral peripheral blood stem cell (CD34+) implantation induces neuroplasticity by enhancing beta1 integrin-mediated angiogenesis in chronic stroke rats. J. Neurosci. 2006;26:3444–3453.
69. Chen D., Lin S., Fan J., Lin H., Lee W., Lin C. Intracerebral implantation of autologous peripheral blood stem cells in stroke patients: a randomized phase II study. Cell. Transplantation. 2014;23:1599–1612.
70. Gao L, Peng Y, Xu W, He P, Li T, Lu X, Chen G. Progress in stem cell therapy for spinal cord injury. Stem. Cells Int. 2020;2020:2853650.
71. Chen C., Shi J., Stanley R.M., Sribnick E.A., Groner J.I., Xiang H. US Trends of ED visits for pediatric traumatic brain injuries: implications for clinical trials. Int. J. Environ Res. Public Health. 2017;14(4).
72. Lee J.A., Kim B.I., Jo C.H. Mesenchymal stem-cell transplantation for hypoxic-ischemic brain injury in neonatal rat model. Pediatr Res. 2010;67(1):42–6.
73. Bonilla C., Zurita M., Otero L., Aguayo C., Vaquero J. Delayed intralesional transplantation of bone marrow stromal cells increases endogenous neurogenesis and promotes functional recovery after severe traumatic brain injury. Brain Inj. 2009;23(9):760–9.
74. Pigott J.H., Ishihara A., Wellman M.L., Russell D.S., Bertone A.L. Investigation of the immune response to autologous, allogeneic, and xenogeneic mesenchymal stem cells after intra-articular injection in horses. Vet. Immunol. Immunopathol. 2013;156(1–2):99–106.
75. Rodrigues M.C., Glover L.E., Weinbren N. Toward personalized cell therapies: autologous menstrual blood cells for stroke. J. Biomed. Biotechnol. 2011:194720. [PubMed: 22162629].
Review
For citations:
Dolgopolov I.S., Rykov M.Yu., Chichanovskaya L.V. Application of cellular technologies in the treatment of neurological disorders caused by COVID-19 SARS-CoV-2. Russian neurological journal. 2022;27(2):60-69. (In Russ.)