Walking skills recovery for patients suffered a stroke
https://doi.org/10.30629/2658-7947-2022-27-1-16-25
Abstract
Recovering the walking ability is one of the major goals in rehabilitation of poststroke patients. Locomotor training should be preceded by identifying pathological gait characteristics and functional gait assessment. The spectrum of rehabilitation methods for restoration of walking skills is quite wide and includes conventional training, training on a treadmill without body weight support and with body weight support, using of electromechanical and robotic devices, additional use of biofeedback, virtual reality, orthoses, electrical muscle stimulation, strength training and balance training. The review provides a brief description of these rehabilitation methods in view of evidence-based medicine. The individual choice of procedures depends on the severity, duration and characteristics of walking defiits, the patient’s preferences and limitations associated with his concomitant diseases.
About the Authors
A. N. BelovaRussian Federation
Nizhny Novgorod
V. O. Sushin
Russian Federation
Sushin Viliyam — Assistant of Departments of Medical Rehabilitation
Nizhny Novgorod
N. Y. Litvinova
Russian Federation
Nizhny Novgorod
M. A. Shabanova
Russian Federation
Nizhny Novgorod
M. A. Rezenova
Russian Federation
Nizhny Novgorod
References
1. Beyaert C., Vasa R., Frykberg G. Gait post-stroke: Pathophysiology and rehabilitation strategies. Neurophysiologie Clinique/ Clinical Neurophysiology. 2015;45(4–5):335–355. https://doi.org/10.1016/j.neucli.2015.09.005
2. Hornby T., Reisman D., Ward I., Scheets P., Miller A., Haddad D. et al. Clinical Practice Guideline to Improve Locomotor Function Following Chronic Stroke, Incomplete Spinal Cord Injury, and Brain Injury. Journal of Neurologic Physical Therapy. 2020;44(1):49–100. https://doi.org/10.1097/NPT.0000000000000303
3. Hesse S. Treadmill training with partial body weight support after stroke: A review. NeuroRehabilitation. 2008;23(1):55–65. https://doi.org/10.3233/NRE-2008-23106
4. Skvortsov D.V. Diagnosis of motor pathology by instrumental methods: gait analysis, stabilometry. M.: T.M. Andreeva. 2007:640 p. (In Russian).
5. Lewek M., Bradley C., Wutzke C., Zinder, S. The Relationship Between Spatiotemporal Gait Asymmetry and Balance in Individuals With Chronic Stroke. Journal of Applied Biomechanics. 2014;30(1):31–36. https://doi.org/10.1123/jab.2012-0208
6. Khat’kova C.E., Kostenko E.V., Akulov M.A., Dyagileva V.P., Nikolaev E.A., Orlova A.S. Modern aspects of the pathophysiology of walking disorders and their rehabilitation in post-stroke patients. S.S. Korsakov Journal of Neurology and Psychiatry (Zhurnal nevrologii i psikhiatrii im. S.S. Korsakova). 2020;119(12):43–50. (In Russian). https://doi.org/10.17116/jnevro201911911243
7. Moore J., Potter K., Blankshain K., Kaplan S., O’Dwyer L., Sullivan J. A Core Set of Outcome Measures for Adults With Neurologic Conditions Undergoing Rehabilitation. Journal of Neurologic Physical Therapy. 2018;42(3):174–220. https://doi.org/10.1097/NPT.0000000000000229
8. Middleton A., Fritz S., Lusardi M. Walking Speed: The Functional Vital Sign. Journal of Aging and Physical Activity. 2015;23(2):314–322. https://doi.org/10.1123/japa.2013-0236
9. Danks K., Pohlig R., Roos M., Wright T., Reisman D. Relationship Between Walking Capacity, Biopsychosocial Factors, Selfefficacy, and Walking Activity in Persons Poststroke. Journal of Neurologic Physical Therapy. 2016;40(4):232–238. https://doi.org/10.1097/NPT.0000000000000143
10. Fulk G., Echternach J., Nof L., O’Sullivan S. Clinometric properties of the six-minute walk test in individuals undergoing rehabilitation poststroke. Physiotherapy Theory and Practice, 2008; 4(3):195–204. https://doi.org/10.1080/09593980701588284
11. Mathias S., Nayak U.S., Isaacs B. Balance in elderly patients: the “get-up and go” test. Archives of Physical Medicine and Rehabilitation. 1986;67(6):387–389.
12. Herman T., Inbar-Borovsky N., Brozgol M., Giladi N., Hausdorff J. The Dynamic Gait Index in healthy older adults: The role of stair climbing, fear of falling and gender. Gait & Posture. 2009;29(2):237–241. https://doi.org/10.1016/j.gaitpost.2008.08.013
13. Wrisley D., Kumar N. Functional Gait Assessment: Concurrent, Discriminative, and Predictive Validity in Community-Dwelling Older Adults. Physical Therapy. 2010;90(5):761–773. https://doi.org/10.2522/ptj.20090069
14. Jackson A., Carnel C., Ditunno J., Read M., Boninger M., Schmeler M. et al. Outcome Measures for Gait and Ambulation in the Spinal Cord Injury Population. The Journal Of Spinal Cord Medicine. 2008;31(5):487–499. https://doi.org/10.1080/10790268.2008.11753644
15. Kitago T., Liang J., Huang V.S., Hayes S., Simon P., Tenteromano L. et al. Improvement after constraint-induced movement therapy: recovery of normal motor control or task-specific compensation? Neurorehabil Neural Repair. 2013;27(2):99–109. https://doi.org/10.1177/1545968312452631
16. Kleim J., Jones, T. Principles of Experience-Dependent Neural Plasticity: Implications for Rehabilitation After Brain Damage. Journal of Speech, Language, and Hearing Research. 2008;51(1):225–239. https://doi.org/10.1044/1092-4388(2008/018)
17. Mikolajczyk T., Ciobanu I., Badea D.I., Iliescu A., Pizzamiglio S., Schauer T. et al. Design and evaluation of the LOPES exoskeleton robot for interactive gait rehabilitation. Transactions on Neural Systems and Rehabilitation Engineering. Published in: IEEE. 2007;15(3):379–386. https://doi.org/10.1109/TNSRE.2007.903919
18. O’Sullivan S.B., Schmitz T.J. Improving functional outcomes in physical rehabilitation. 2nd ed. Philadelphia: F.A. Davis Company. 2016:448 p. ISBN 9780803646124
19. White J., Bartley E., Janssen H., Jordan L., Spratt N. Exploring stroke survivor experience of participation in an enriched environment: a qualitative study. Disability And Rehabilitation. 2015;37(7):593–600. https://doi.org/10.3109/09638288.2014.935876
20. Laver K., Lange B., George S., Deutsch J., Saposnik G., Crotty M. Virtual reality for stroke rehabilitation. Cochrane Database Of Systematic Reviews. 2017;11(11):CD008349. https://doi.org/10.1002/14651858.CD008349.pub4
21. Harkema S., Behrman P.T., Barbeau H. Locomotor Training: principles and practice. New York, NY: Oxford University Press. 2011:200 p. https://doi.org/10.1093/acprof:oso/9780195342086.001.0001
22. George Hornby T., Straube D.S., Kinnaird C.R., Holleran C.L., Echauz A.J., Rodriguez K.S. et al. Importance of Specificity, Amount, and Intensity of Locomotor Training to Improve Ambulatory Function in Patients Poststroke. Topics In Stroke Rehabilitation. 2011;18(4):293–307. https://doi.org/10.1310/tsr1804-293
23. Perez M., Lungholt B., Nyborg K., Nielsen J. Motor skill training induces changes in the excitability of the leg cortical area in healthy humans. Experimental Brain Research. 2004;159(2):197–205. https://doi.org/10.1007/s00221-004-1947-5
24. States R.A., Pappas E., Salem Y. Overground physical therapy gait training for chronic stroke patients with mobility deficits. Stroke. 2009;40(11):627–628. https://doi.org/10.1002/14651858.CD006075.pub2
25. Tyson S., Sadeghi-Demneh E., Nester C. A systematic review and meta-analysis of the effect of an ankle-foot orthosis on gait biomechanics after stroke. Clinical Rehabilitation. 2013;27(10):879–891. https://doi.org/10.1177/0269215513486497
26. Mehrholz J., Thomas S., Elsner B. Treadmill training and body weight support for walking after stroke (Review). Cochrane Database of Systematic Reviews. 2017;8(8):CD002840). https://doi.org/10.1002/14651858.CD002840.pub4
27. Boyne P., Dunning K., Carl D., Gerson M., Khoury J., Rockwell B. et al. High-Intensity Interval Training and Moderate-Intensity Continuous Training in Ambulatory Chronic Stroke: Feasibility Study. Physical Therapy. 2016;96(10):1533–1544. https://doi.org/10.2522/ptj.20150277
28. Holleran C., Rodriguez K., Echauz A., Leech K., Hornby T. Potential Contributions of Training Intensity on Locomotor Performance in Individuals With Chronic Stroke. Journal of Neurologic Physical Therapy. 2015;39(2):95–102. https://doi.org/10.1097/NPT.0000000000000077
29. Mao Y., Lo W., Lin Q., Li L., Xiao X., Raghavan P., Huang D. The Effect of Body Weight Support Treadmill Training on Gait Recovery, Proximal Lower Limb Motor Pattern, and Balance in Patients with Subacute Stroke. BioMed Research International. 2015;2015:175719. https://doi.org/10.1155/2015/175719
30. Cho K., Lee W. Effect of treadmill training based real-world video recording on balance and gait in chronic stroke patients: A randomized controlled trial. Gait & Posture. 2014;39(1):523–528. https://doi.org/10.1016/j.gaitpost.2013.09.003
31. Sullivan K., Knowlton B., Dobkin B. Step training with body weight support: Effect of treadmill speed and practice paradigms on poststroke locomotor recovery. Archives of Physical Medicine and Rehabilitation. 2002;83(5):683–691. https://doi.org/10.1053/apmr.2002.32488
32. Takao T., Tanaka N., Iizuka N., Saitou H., Tamaoka A., Yanagi H. Improvement of gait ability with a short-term intensive gait rehabilitation program using body weight support treadmill training in community dwelling chronic poststroke survivors. Journal of Physical Therapy Science. 2015;27(1):159–163. https://doi.org/10.1589/jpts.27.159
33. Yen C., Wang R., Liao K., Huang C., Yang Y. Gait TrainingInduced Change in Corticomotor Excitability in Patients With Chronic Stroke. Neurorehabilitation and Neural Repair. 2007;22(1):22–30. https://doi.org/10.1177/1545968307301875
34. Combs-Miller S., Kalpathi Parameswaran A., Colburn D., Ertel T., Harmeyer A., Tucker L., Schmid A. Body weight-supported treadmill training vs. overground walking training for persons with chronic stroke: a pilot randomized controlled trial. Clinical Rehabilitation. 2014;28(9):873–884. https://doi.org/10.1177/0269215514520773
35. Mehrholz J., Thomas S., Kugler J., Pohl M., Elsner B. Electromechanical-assisted training for walking after stroke. Cochrane Database of Systematic Reviews. 2020;10(CD006185):751. https://doi.org/10.1002/14651858.CD006185.pub5
36. Kim H., You J. A Review of Robot-Assisted Gait Training in Stroke Patients. Brain & Neurorehabilitation. 2017;10(2). https://doi.org/10.12786/bn.2017.10.e9
37. Iosa M., Morone G., Cherubini A., Paolucci S. The Three Laws of Neurorobotics: A Review on What Neurorehabilitation Robots Should Do for Patients and Clinicians. Journal of Medical and Biological Engineering. 2016;36(1):1–11. https://doi.org/10.1007/s40846-016-0115-2
38. Bessler J., Prange-Lasonder G., Schulte R., Schaake L., Prinsen E., Buurke J. Occurrence and Type of Adverse Events During the Use of Stationary Gait Robots — A Systematic Literature Review. Frontiers in Robotics and AI, 2020;7:557–606. https://doi.org/10.3389/frobt.2020.557606
39. Morone G., Paolucci S., Cherubini A., De Angelis D., Venturiero V., Coiro P., Iosa M. Robot-assisted gait training for stroke patients: current state of the art and perspectives of robotics. Neuropsychiatric Disease and Treatment. 2017;13:1303–1311. https://doi.org/10.2147/NDT.S114102
40. Zhang X., Yue Z., Wang J. Robotics in Lower-Limb Rehabilitation after Stroke. Behavioural Neurology. 2017;article ID3731802:1–13. https://doi.org/10.1155/2017/3731802
41. Berger A., Horst F., Müller S., Steinberg F., Doppelmayr M. Current State and Future Prospects of EEG and fNIRS in RobotAssisted Gait Rehabilitation: A Brief Review. Frontiers in Human Neuroscience. 2019;13(13):1–24. https://doi.org/10.3389/fnhum.2019.00172
42. Bang D., Shin W. Effects of robot-assisted gait training on spatiotemporal gait parameters and balance in patients with chronic stroke: A randomized controlled pilot trial. Neurorehabilitation. 2016;38(4):343–349. https://doi.org/10.3233/NRE-161325
43. Buesing C., Fisch G., O’Donnell M., Shahidi I., Thomas L., Mummidisetty C. et al. Effects of a wearable exoskeleton stride management assist system (SMA®) on spatiotemporal gait characteristics in individuals after stroke: a randomized controlled trial. Journal of Neuroengineering And Rehabilitation. 2015;12:69. https://doi.org/10.1186/s12984-015-0062-0
44. Forrester L., Roy A., Hafer-Macko C., Krebs H., Macko R. Taskspecific ankle robotics gait training after stroke: a randomized pilot study. Journal of Neuroengineering and Rehabilitation. 2016;13(1):1–6. https://doi.org/10.1186/s12984-016-0158-1
45. Giggins O., Persson U., Caulfield B. Biofeedback in rehabilitation. Journal of Neuroengineering and Rehabilitation. 2013;10(60):1–11. https://doi.org/10.1186/1743-0003-10-60
46. Schenck C., Kesar T. Effects of unilateral real-time biofeedback on propulsive forces during gait. Journal of Neuroengineering and Rehabilitation. 2017;14(1):52. https://doi.org/10.1186/s12984-017-0252-z
47. Stanton R., Ada L., Dean C.M., Preston E. Biofeedback improves performance in lower limb activities more than usual therapy in people following stroke: a systematic review. Journal of Physiotherapy. 2016;63(1):11–16. https://doi.org/10.1016/j.jphys.2016.11.006
48. Holden M. Virtual Environments for Motor Rehabilitation: Review. Cyberpsychology & Behavior. 2005;8(3):187–211. https://doi.org/10.1089/cpb.2005.8.187
49. Fu M., Knutson J., Chae J. Stroke rehabilitation using virtual environments. Phys. Med. Rehabil. Clin. N. Am. 2015;26(4):747–757. https://doi.org/10.1016/j.pmr.2015.06.001
50. Keshner E.A., Fung J. The quest to apply VR technology to rehabilitation: tribulations and treasures. Journal of Vestibular Research. 2017;27:1–5. https://doi.org/10.3233/VES-170610
51. Calabro S., Naro A., Russo M., Leo A., Luca R., Balletta T. et al. The role of virtual reality in improving motor performance as revealed by EEG: a randomized trial. J. Neuroeng. Rehabil. 2017;14:53. https://doi.org/10.1186/s12984-017-0268-4
52. Jaffe D.L., Brown D.A., Pierson-Carey C.D., Buckley E.L., Lew H.L. Stepping over obstacles to improve walking in individuals with poststroke hemiplegia. Journal of Rehabilitation Research & Development. 2004;41(3):283–292
53. Johansson B.B. Current trends in stroke rehabilitation. A review with focus on brain plasticity. Acta Neurol. Scand. 2011;123(3):147–159. https://doi.org/10.1111/j.1600-0404.2010.01417.x
54. Malouin F., Richards C. Mental Practice for Relearning Locomotor Skills. Physical Therapy. 2010;90(2):240–251. https://doi.org/10.2522/ptj.20090029
55. Dunsky A., Dickstein R., Marcovitz E., Levy S., Deutsch J. Home-Based Motor Imagery Training for Gait Rehabilitation of People With Chronic Poststroke Hemiparesis. Archives of Physical Medicine and Rehabilitation. 2008;89(8):1580–1588. https://doi.org/10.1016/j.apmr.2007.12.039
56. Sacheli L.M., Zapparoli L., De Santis C., Preti M., Pelosi C., Ursino N. et al. Mental steps: Differential activation of internal pacemakers in motor imagery and in mental imitation of gait. Human Brain Mapping. 2017;38(10):5195–5216. https://doi.org/10.1002/hbm.23725
57. Signal N. Strength training after stroke: rationale, evidence and potential implementation barriers for physiotherapists. New Zealand Journal of Physiotherapy. 2014;42(2):101–107.
58. Tong R., Ng M., Li L., So E. Gait Training of Patients After Stroke Using an Electromechanical Gait Trainer Combined With Simultaneous Functional Electrical Stimulation. Physical Therapy. 2006;86(9):1282–1294. https://doi.org/10.2522/ptj.20050183
59. Saunders D., Greig C., Mead G. Physical Activity and Exercise After Stroke. Stroke. 2014;45(12):3742–3747. https://doi.org/10.1161/STROKEAHA.114.004311
60. Duncan P., Sullivan K., Behrman A., Azen S., Wu S., Nadeau S. et al. Body-Weight — Supported Treadmill Rehabilitation after Stroke. New England Journal of Medicine. 2011;364(21):2026–2036. https://doi.org/10.1056/NEJMoa1010790
Review
For citations:
Belova A.N., Sushin V.O., Litvinova N.Y., Shabanova M.A., Rezenova M.A. Walking skills recovery for patients suffered a stroke. Russian neurological journal. 2022;27(1):16-25. (In Russ.) https://doi.org/10.30629/2658-7947-2022-27-1-16-25