Preview

Russian neurological journal

Advanced search

Immunopathogenesis and immunotherapeutic approaches of neurodegenerative and cerebrovascular diseases with cognitive impairment. The current state of the problem and prospects

https://doi.org/10.30629/2658-7947-2021-26-5-4-15

Abstract

Cognitive impairments (CI) are a serious problem in modern society, because they significantly reduce patients’ quality of life and tend to progress. Age-related diseases such as neurodegenerative — first of all Alzheimer’s disease (AD) and cerebrovascular disorders are key causes leading to CI. At present, approaches to treating these diseases have limited effectiveness in restoring cognitive functions, and do not change disease course, although they can slow cognitive decline.

Understanding the immunopathogenesis of neurodegenerative and cerebrovascular diseases defines new targets and approaches to their treatment. In addition, suppression of neuroinflammation is advisable in the cases of early nonclarified cognitive decline, when information from routine medical, laboratory and instrumental examination of patients is insufficient to identify the causes of CI.

This article summarizes current understanding of the immunopathogenesis of AD and chronic cerebral ischemia. The mechanism of neuroinflammation is presented as a cascade of sequential events that are closed in a self-perpetuating inflammatory response in the end. So called damage-associated molecular patterns, specific receptors that can bind them (pattern recognition receptors), intracellular signal transduction in microglia, cytokines and adhesion molecules are considered as potential points of application of immunomodulatory therapy. The review provides information on the current level of development of immunotherapy of AD, chronic cerebral ischemia and offers the prospect of its application.

About the Authors

A. A. Smirnova
N.P. Bechtereva Institute of the Human Brain of the Russian Academy of Sciences
Russian Federation

197376, Saint Petersburg



L. N. Prakhova
N.P. Bechtereva Institute of the Human Brain of the Russian Academy of Sciences
Russian Federation

197376, Saint Petersburg



A. G. Ilves
N.P. Bechtereva Institute of the Human Brain of the Russian Academy of Sciences
Russian Federation

197376, Saint Petersburg



References

1. Rodríguez-Sánchez E., Mora-Simón S., Patino-Alonso M.C., García-García R., Escribano-Hernández A., García-Ortiz L. et al. Prevalence of cognitive impairment in individuals aged over 65 in an urban area: DERIVA study. BMC Neurol. 2011;11:147. https://doi.org/10.1186/1471-2377-11-147

2. Hugo J., Ganguli M. Dementia and cognitive impairment: epidemiology, diagnosis, and treatment. Clin. Geriatr. Med. 2014;30(3):421–42. https://doi.org/10.1016/j.cger.2014.04.001

3. Zeng L., Wang Y., Liu J., Wang L., Weng S., Chen K. et al. Pro-inflammatory cytokine network in peripheral inflammation response to cerebral ischemia. Neurosci Lett. 2013;548:4–9. https://doi.org/10.1016/j.neulet.2013.04.037

4. Litvinenko I.V., Emelin A.Yu., Lobzin V.Yu., Kolmakova K.A., Naumov K.M., Lupanov I.A. et al. The amyloid hypothesis of Alzheimer’s disease: past and present, hopes and disappointments. Neurology, Neuropsychiatry, Psychosomatics. 2019;11(3):4–10. (In Russ.). https://doi.org/10.14412/2074-2711-2019-3-4-10

5. Karch C.M., GoateA.M.Alzheimer’s disease risk genes and mechanisms of disease pathogenesis. Biol. Psychiatry. 2015;77(1):43– 51. https://doi.org/10.1016/j.biopsych.2014.05.006

6. Balducci C., Forloni G. Novel targets in Alzheimer’s disease: A special focus on microglia. Pharmacol Res. 2018;130:402– 413. https://doi.org/10.1016/j.phrs.2018.01.017

7. Nordengen K., Kirsebom B.E., Henjum K., Selnes P., Gísladóttir B., Wettergreen M. et al. Glial activation and inflammation along the Alzheimer’s disease continuum. J. Neuroinflammation. 2019;16(1):46. https://doi.org/10.1186/s12974-019-1399-2

8. Glass C.K., Saijo K., Winner B., Marchetto M.C., Gage F.H. Mechanisms underlying inflammation in neurodegeneration. Cell. 2010;140(6):918–34. https://doi.org/10.1016/j.cell.2010.02.016

9. Jin R., Yang G., Li G. Inflammatory mechanisms in ischemic stroke: role of inflammatory cells. J. Leukoc. Biol. 2010;87(5):779–89. https://doi.org/10.1189/jlb.1109766

10. Swardfager W., Lanctôt K., Rothenburg L., Wong A., Cappell J., Herrmann N. Ameta-analysis of cytokines in Alzheimer’s disease. Biol. Psychiatry. 2010;68(10):930–41. https://doi.org/10.1016/j.biopsych.2010.06.012

11. Nucera A., Hachinski V. Cerebrovascular and Alzheimer disease: fellow travelers or partners in crime? J. Neurochem. 2018;144(5):513–516. https://doi.org/10.1111/jnc.14283

12. Lall R., Mohammed R., Ojha U. What are the links between hypoxia and Alzheimer’s disease? Neuropsychiatr. Dis. Treat. 2019;15:1343–1354. https://doi.org/10.2147/NDT.S203103

13. Benakis C., Garcia-Bonilla L., Iadecola C., Anrather J. The role of microglia and myeloid immune cells in acute cerebral ischemia. Front. Cell. Neurosci. 2015;8:461. https://doi.org/10.3389/fncel.2014.00461

14. Heppner F.L., Ransohoff R.M., Becher B. Immune attack: the role of inflammation in Alzheimer disease. Nat. Rev. Neurosci. 2015;16(6):358–72. https://doi.org/10.1038/nrn3880

15. Jevtic S., Sengar A.S., Salter M.W., McLaurin J. The role of the immune system in Alzheimer disease: Etiology and treatment. Ageing. Res. Rev. 2017;40:84–94. https://doi.org/10.1016/j.arr.2017.08.005

16. Banjara M., Ghosh C. Sterile Neuroinflammation and Strategies for Therapeutic Intervention. Int. J. Inflam. 2017;2017:8385961. https://doi.org/10.1155/2017/8385961

17. Frank-Cannon T.C., Alto L.T., McAlpine F.E., Tansey M.G. Does neuroinflammation fan the flame in neurodegenerative diseases? Mol. Neurodegener. 2009;4:47. https://doi.org/10.1186/17501326-4-47

18. Presta I., Vismara M., Novellino F., Donato A., Zaffino P., Scali E. et al. Innate Immunity Cells and the Neurovascular Unit. Int. J. Mol. Sci. 2018;19(12):3856. https://doi.org/10.3390/ijms19123856

19. Paudel Y.N., Angelopoulou E., Piperi C., Othman I., Aamir K., Shaikh M.F. Impact of HMGB1, RAGE, and TLR4 in Alzheimer’s Disease (AD): From Risk Factors to Therapeutic Targeting. Cells. 2020;9(2):383. https://doi.org/10.3390/cells9020383

20. Shabab T., Khanabdali R., Moghadamtousi S.Z., Kadir H.A., Mohan G. Neuroinflammation pathways: a general review. Int. J. Neurosci. 2017;127(7):624–633. https://doi.org/10.1080/00207454.2016.1212854

21. Morgun A.V., Komleva U.K., Lopatina O.L., Kuvacheva N.V., Panina Y.A., Taranushenko T.Y. et al. Bulletin of Siberian Medicine. 2014;13(5):138–148. (In Russ.).

22. Zenaro E., Piacentino G., Constantin G. The blood-brain barrier in Alzheimer’s disease. Neurobiol. Dis. 2017;107:41–56. https://doi.org/10.1016/j.nbd.2016.07.007

23. Gogoleva V.S., Drutskaya M.S., Atretkhany K.S.-N. The role of microglia in the homeostasis of the central nervous system and neuroinflammation. Molecular Biology. 2019;53(5);696–703. (In Russ.). https://doi.org/10.1134/S0026898419050057

24. Krabbe G., Halle A., Matyash V., Rinnenthal J.L., Eom G.D., Bernhardt U. et al. Functional impairment of microglia coincides with Beta-amyloid deposition in mice with Alzheimer-like pathology. PLoS One. 2013;8(4):e60921. https://doi.org/10.1371/journal.pone.0060921

25. Arriagada P.V., Growdon J.H., Hedley-Whyte E.T., Hyman B.T. Neurofibrillary tangles but not senile plaques parallel duration and severity of Alzheimer’s disease. Neurology. 1992;42(3 Pt 1):631–9. https://doi.org/10.1212/wnl.42.3.631

26. Duyckaerts C., Bennecib M., Grignon Y., Uchihara T., He Y., Piette F. et al. Modeling the relation between neurofibrillary tangles and intellectual status. Neurobiol. Aging. 1997;18(3):267– 73. https://doi.org/10.1016/s0197-4580(97)80306-5

27. Cho H., Choi J.Y., Hwang M.S., Lee J.H., Kim Y.J., Lee H.M. et al. Tau PET in Alzheimer disease and mild cognitive impairment. Neurology. 2016;87(4):375–83. https://doi.org/10.1212/WNL.0000000000002892

28. Pontecorvo M.J., Devous M.D. Sr., Navitsky M., Lu M., Salloway S., Schaerf F.W. et al.; 18F-AV-1451-A05 investigators. Relationships between flortaucipir PET tau binding and amyloid burden, clinical diagnosis, age and cognition. Brain. 2017;140(3):748–763. https://doi.org/10.1093/brain/aww334

29. Heneka M.T., Kummer M.P., Latz E. Innate immune activation in neurodegenerative disease. Nat. Rev. Immunol. 2014;14(7):463– 77. https://doi.org/10.1038/nri3705

30. Takada E., Okubo K., Yano Y., Iida K., Someda M., Hirasawa A. et al. Molecular Mechanism of Apoptosis by Amyloid β-Protein Fibrils Formed on Neuronal Cells. ACS Chem. Neurosci. 2020;11(5):796–805. https://doi.org/10.1021/acschemneuro.0c00011

31. Yoshiyama Y., Higuchi M., Zhang B., Huang S.M., Iwata N., Saido T.C. et al. Synapselossandmicroglialactivationprecedetangles in a P301S tauopathy mouse model. Neuron. 2007;53(3):337– 51. https://doi.org/10.1016/j.neuron.2007.01.010

32. Ghochikyan A., Mkrtichyan M., Petrushina I., Movsesyan N., Karapetyan A., Cribbs D.H. et al. Prototype Alzheimer’s disease epitope vaccine induced strong Th2-type antiAbeta antibody response with Alum to Quil A adjuvant switch. Vaccine. 2006;24(13):2275–82. https://doi.org/10.1016/j.vaccine.2005.11.039

33. Monsonego A., Nemirovsky A., Harpaz I. CD4 T cells in immunity and immunotherapy of Alzheimer’s disease. Immunology. 2013;139(4):438–46. https://doi.org/10.1111/imm.12103

34. Oberstein T.J., Taha L., Spitzer P., Hellstern J., Herrmann M., Kornhuber J. et al. Imbalance of Circulating Th17 and Regulatory T Cells in Alzheimer’s Disease: A Case Control Study. Front Immunol. 2018;9:1213. https://doi.org/10.3389/fimmu.2018.01213

35. Scaffidi P., Misteli T., Bianchi M.E. Release of chromatin protein HMGB1 by necrotic cells triggers inflammation. Nature. 2002;418(6894):191–5. https://doi.org/10.1038/nature00858

36. Quintana F.J., Cohen I.R. Heat shock proteins as endogenous adjuvants in sterile and septic inflammation. J. Immunol. 2005;175(5):2777–82. https://doi.org/10.4049/jimmunol.175.5.2777

37. Bours M.J., Swennen E.L., Di Virgilio F., Cronstein B.N., Dagnelie P.C. Adenosine 5’-triphosphate and adenosine as endogenous signaling molecules in immunity and inflammation. Pharmacol. Ther. 2006;112(2):358–404. https://doi.org/10.1016/j.pharmthera.2005.04.013

38. Chen G.Y., Nuñez G. Sterile inflammation: sensing and reacting to damage. Nat. Rev. Immunol. 2010;10(12):826–37. https://doi.org/10.1038/nri2873

39. Iadecola C., Anrather J. The immunology of stroke: from mechanisms to translation. Nat. Med. 2011;17(7):796–808. https://doi.org/10.1038/nm.2399

40. Zuev V.A. Immunological theory of pathogenesis of Alzheimer’s disease: facts and hypotheses. Modern problems of science and education. 2019;4. (In Russ.).

41. Diamond B., Honig G., Mader S., Brimberg L., Volpe B.T. Brainreactiveantibodiesanddisease.Annu.Rev.Immunol.2013;31:345– 85. https://doi.org/10.1146/annurev-immunol-020711-075041

42. Shibata D., Cain K., Tanzi P., Zierath D., Becker K. Myelin basic protein autoantibodies, white matter disease and stroke outcome. J. Neuroimmunol. 2012;252(1–2):106–12. https://doi.org/10.1016/j.jneuroim.2012.08.006

43. Komleva Y.К., Kuvacheva N.V., Lopatina О.L., Gorina Yа.V., Frolova О.V., Teplyashina Е.А. et al. Modern Concepts of Alzheimer’s Disease Pathogenesis: Novel Approaches to Pharmacotherapy (Review). Sovremennye tehnologii v medicine. 2015;4(88):11–19. (In Russ.). https://doi.org/10.17691/stm2015.7.3.19

44. Lannfelt L., Möller C., Basun H., Osswald G., Sehlin D., Satlin A. et al. Perspectives on future Alzheimer therapies: amyloid-β protofibrils — a new target for immunotherapy with BAN2401 in Alzheimer’s disease. Alzheimers Res. Ther. 2014;6(2):16. https://doi.org/10.1186/alzrt246

45. Burstein A.H., Zhao Q., Ross J., Styren S., Landen J.W., Ma W.W. et al. Safety and pharmacology of ponezumab (PF04360365) after a single 10-minute intravenous infusion in subjects with mild to moderate Alzheimer disease. Clin. Neuropharmacol. 2013;36(1):8–13. https://doi.org/10.1097/WNF.0b013e318279bcfa

46. Salloway S., Sperling R., Fox N.C., Blennow K., Klunk W., Raskind M. et al.; Bapineuzumab 301 and 302 Clinical Trial Investigators. Two phase 3 trials of bapineuzumab in mild-to-moderate Alzheimer’s disease. N. Engl. J. Med. 2014;370(4):322–33. https://doi.org/10.1056/NEJMoa1304839

47. Panza F., Lozupone M., Seripa D., Imbimbo B.P. Amyloid-β immunotherapy for alzheimer disease: Is it now a long shot? Ann. Neurol. 2019;85(3):303–315. https://doi.org/10.1002/ana.25410

48. Mintun M.A., Lo A.C., Duggan Evans C., Wessels A.M., Ardayfio P.A., Andersen S.W. et al. Donanemab in Early Alzheimer’s Disease. N. Engl. J. Med. 2021;Mar 13. https://doi.org/10.1056/NEJMoa2100708

49. Barrera-Ocampo A., Lopera F. Amyloid-beta immunotherapy: the hope for Alzheimer disease? Colomb. Med. (Cali). 2016;47(4):203–212.

50. Imbimbo B.P., Watling M. Investigational BACE inhibitors for the treatment of Alzheimer’s disease. Expert Opin. Investig. Drugs. 2019;28(11):967–975. https://doi.org/10.1080/13543784.2019.1683160

51. Panza F., Solfrizzi V., Seripa D., Imbimbo B.P., Lozupone M., Santamato A. et al. Tau-Centric Targets and Drugs in Clinical Development for the Treatment of Alzheimer’s Disease. Biomed. Res. Int. 2016;2016:3245935. https://doi.org/10.1155/2016/3245935

52. Novak P., Schmidt R., Kontsekova E., Zilka N., Kovacech B., Skrabana R. et al. Safety and immunogenicity of the tau vaccine AADvac1 in patients with Alzheimer’s disease: a randomised, double-blind, placebo-controlled, phase 1 trial. Lancet Neurol. 2017;16(2):123–134. https://doi.org/10.1016/S14744422(16)30331-3

53. Wischik C.M., Harrington C.R., Storey J.M. Tau-aggregation inhibitor therapy for Alzheimer’s disease. Biochem. Pharmacol. 2014;88(4):529–39. https://doi.org/10.1016/j.bcp.2013.12.008

54. Carrasco-Gallardo C., Farías G.A., Fuentes P., Crespo F., Maccioni R.B. Can nutraceuticals prevent Alzheimer’s disease? Potential therapeutic role of a formulation containing shilajit and complex B vitamins. Arch. Med. Res. 2012;43(8):699–704. https://doi.org/10.1016/j.arcmed.2012.10.010

55. Cornejo A., Jiménez J.M., Caballero L., Melo F., Maccioni R.B. Fulvic acid inhibits aggregation and promotes disassembly of tau fibrils associated with Alzheimer’s disease. J. Alzheimers Dis. 2011;27(1):143–53. https://doi.org/10.3233/JAD-2011-110623

56. Puzzo D., Argyrousi E.K., Staniszewski A., Zhang H., Calcagno E., Zuccarello E. et al. Tau is not necessary for amyloidβ-induced synaptic and memory impairments. J. Clin. Invest. 2020;130(9):4831–4844. https://doi.org/10.1172/JCI137040

57. Nishibori M., Mori S, Takahashi HK. Anti-HMGB1 monoclonal antibody therapy for a wide range of CNS and PNS diseases. J. Pharmacol. Sci. 2019;140(1):94–101. https://doi.org/10.1016/j.jphs.2019.04.006

58. Liu K., Mori S., Takahashi H.K., Tomono Y., Wake H., Kanke T. et al. Anti-high mobility group box 1 monoclonal antibody ameliorates brain infarction induced by transient ischemia in rats. FASEB J. 2007;21(14):3904–16. https://doi.org/10.1096/fj.078770com

59. Zhang J., Takahashi H.K., Liu K., Wake H., Liu R., Maruo T. et al. Anti-high mobility group box-1 monoclonal antibody protects the blood-brain barrier from ischemia-induced disruption in rats. Stroke. 2011;42(5):1420–8. https://doi.org/10.1161/STROKEAHA.110.598334

60. Paudel Y.N., Angelopoulou E., Semple B., Piperi C., Othman I., Shaikh M.F. Potential Neuroprotective Effect of the HMGB1 Inhibitor Glycyrrhizin in Neurological Disorders. ACS Chem. Neurosci. 2020;11(4):485–500. https://doi.org/10.1021/acschemneuro.9b00640

61. Fujita K., Motoki K., Tagawa K., Chen X., Hama H., Nakajima K. et al. HMGB1, a pathogenic molecule that induces neurite degeneration via TLR4-MARCKS, is a potential therapeutic target for Alzheimer’s disease. Sci. Rep. 2016;6:31895. https://doi.org/10.1038/srep31895

62. Arbeloa J., Pérez-Samartín A., Gottlieb M., Matute C. P2X7 receptor blockade prevents ATP excitotoxicity in neurons and reduces brain damage after ischemia. Neurobiol Dis. 2012;45(3):954–61. https://doi.org/10.1016/j.nbd.2011.12.014

63. Diaz-Hernandez J.I., Gomez-Villafuertes R., León-Otegui M., Hontecillas-Prieto L., Del Puerto A., Trejo J.L. et al. In vivo P2X7 inhibition reduces amyloid plaques inAlzheimer’s disease through GSK3β and secretases. Neurobiol. Aging. 2012;33(8):1816–28. https://doi.org/10.1016/j.neurobiolaging.2011.09.040

64. Eser A., Colombel J.F., Rutgeerts P., Vermeire S., Vogelsang H., Braddock M. et al. Safety and Efficacy of an Oral Inhibitor of the Purinergic Receptor P2X7 in Adult Patients with Moderately to Severely Active Crohn’s Disease: A Randomized Placebo-controlled, Double-blind, Phase IIa Study. Inflamm. Bowel. Dis. 2015;21(10):2247–53. https://doi.org/10.1097/MIB.0000000000000514

65. Andresen L., Theodorou K., Grünewald S., Czech-Zechmeister B., Könnecke B., Lühder F. et al. Evaluation of the Therapeutic Potential of Anti-TLR4-Antibody MTS510 in Experimental Stroke and Significance of Different Routes of Application. PLoS One. 2016;11(2):e0148428. https://doi.org/10.1371/journal.pone.0148428

66. Fernández G., Moraga A., Cuartero M.I., García-Culebras A., Peña-Martínez C., Pradillo J.M. et al. TLR4-Binding DNA Aptamers Show a Protective Effect against Acute Stroke in Animal Models. Mol. Ther. 2018;26(8):2047–2059. https://doi.org/10.1016/j.ymthe.2018.05.019

67. Ye Y., Jin T., Zhang X., Zeng Z., Ye B., Wang J. et al. Meisoindigo Protects Against Focal Cerebral Ischemia-Reperfusion Injury by Inhibiting NLRP3 Inflammasome Activation and Regulating Microglia/Macrophage Polarization via TLR4/NF-κB Signaling Pathway. Front Cell. Neurosci. 2019;13:553. https://doi.org/10.3389/fncel.2019.00553

68. Cui W., Sun C., Ma Y., Wang S., Wang X., Zhang Y. Inhibition of TLR4 Induces M2 Microglial Polarization and Provides Neuroprotection via the NLRP3 Inflammasome in Alzheimer’s Disease. Front Neurosci. 2020;14:444. https://doi.org/10.3389/fnins.2020.00444

69. Deane R., Du Yan S., Submamaryan R.K., LaRue B., Jovanovic S., Hogg E. et al. RAGE mediates amyloid-beta peptide transport across the blood-brain barrier and accumulation in brain. Nat. Med. 2003;9(7):907–13. https://doi.org/10.1038/nm890

70. Webster S.J., Mruthinti S., Hill W.D., Buccafusco J.J., Terry A.V. Jr. An aqueous orally active vaccine targeted against a RAGE/AB complex as a novel therapeutic for Alzheimer’s disease. Neuromolecular. Med. 2012;14(2):119–30. https://doi.org/10.1007/s12017-012-8176-z

71. Galasko D., Bell J., Mancuso J.Y., Kupiec J.W., Sabbagh M.N., van Dyck C. et al.; Alzheimer’s Disease Cooperative Study. Clinical trial of an inhibitor of RAGE-Aβ interactions in Alzheimer disease. Neurology. 2014;82(17):1536–42. https://doi.org/10.1212/WNL.0000000000000364

72. Raza S.S., Khan M.M., Ahmad A., Ashafaq M., Khuwaja G., Tabassum R. et al. Hesperidin ameliorates functional and histological outcome and reduces neuroinflammation in experimental stroke. Brain Res. 2011;1420:93–105. https://doi.org/10.1016/j. brainres.2011.08.047

73. Yang Y., Liu H., Zhang H., Ye Q., Wang J., Yang B. et al. ST2/IL-33-Dependent Microglial Response Limits Acute Ischemic Brain Injury. J. Neurosci. 2017;37(18):4692–4704. https://doi.org/10.1523/JNEUROSCI.3233-16.2017

74. Liu X., Liu J., Zhao S., Zhang H., Cai W., Cai M. et al. Interleukin-4 Is Essential for Microglia/Macrophage M2 Polarization and Long-Term Recovery After Cerebral Ischemia. Stroke. 2016;47(2):498–504. https://doi.org/10.1161/STROKEAHA.115.012079

75. Fu A.K., Hung K.W., Yuen M.Y., Zhou X., Mak D.S., Chan I.C. et al. IL-33 ameliorates Alzheimer’s disease-like pathology and cognitive decline. Proc. Natl. Acad. Sci. USA. 2016;113(19):E2705– 13. https://doi.org/10.1073/pnas.1604032113

76. Fu Y., Yan Y. Emerging Role of Immunity in Cerebral Small Vessel Disease. Front Immunol. 2018;9:67. https://doi.org/10.3389/fimmu.2018.00067

77. Liu Z., Ran Y., Huang S., Wen S., Zhang W., Liu X. et al. Curcumin Protects against Ischemic Stroke by Titrating Microglia/Macrophage Polarization. Front Aging. Neurosci. 2017;9:233. https://doi.org/10.3389/fnagi.2017.00233

78. He Q., Li Z., Wang Y., Hou Y., Li L., Zhao J. Resveratrol alleviates cerebral ischemia/reperfusion injury in rats by inhibiting NLRP3 inflammasome activation through Sirt1-dependent autophagy induction. Int. Immunopharmacol. 2017;50:208–215. https://doi.org/10.1016/j.intimp.2017.06.029

79. Lei J., Chen Q. Resveratrol attenuates brain damage in permanent focal cerebral ischemia via activation of PI3K/Akt signaling pathway in rats. Neurol. Res. 2018;40(12):1014–1020. https://doi.org/10.1080/01616412.2018.1509826

80. Sheng Z., Liu Y., Li H., Zheng W., Xia B., Zhang X. et al. Efficacy of Minocycline in Acute Ischemic Stroke: A Systematic Review and Meta-Analysis of Rodent and Clinical Studies. Front Neurol. 2018;9:1103. https://doi.org/10.3389/fneur.2018.01103

81. Corpas R., Griñán-Ferré C., Rodríguez-Farré E., Pallàs M., Sanfeliu C. Resveratrol Induces Brain Resilience Against Alzheimer Neurodegeneration Through Proteostasis Enhancement. Mol. Neurobiol. 2019;56(2):1502–1516. https://doi.org/10.1007/s12035-018-1157-y

82. Garwood C.J., Cooper J.D., Hanger D.P., Noble W. Anti-inflammatory impact of minocycline in a mouse model of tauopathy. Front Psychiatry. 2010;1:136. https://doi.org/10.3389/fpsyt.2010.00136

83. Lampl Y., Boaz M., Gilad R., Lorberboym M., Dabby R., Rapoport A. et al. Minocycline treatment in acute stroke: an openlabel, evaluator-blinded study. Neurology. 2007;69(14):1404–10. https://doi.org/10.1212/01.wnl.0000277487.04281.db

84. Padma Srivastava M.V., Bhasin A., Bhatia R., Garg A., Gaikwad S., Prasad K. et al. Efficacy of minocycline in acute ischemic stroke: a single-blinded, placebo-controlled trial. Neurol. India. 2012;60(1):23–8. https://doi.org/10.4103/00283886.93584

85. Howard R., Zubko O., Gray R., Bradley R., Harper E., Kelly L. et al. Minocycline 200 mg or 400 mg versus placebo for mild Alzheimer’s disease: the MADE Phase II, three-arm RCT. Southampton (UK): NIHR Journals Library; 2020;Apr. https://doi.org/10.3310/eme07020

86. Chainoglou E., Hadjipavlou-Litina D. Curcumin in Health and Diseases: Alzheimer’s Disease and Curcumin Analogues, Derivatives, and Hybrids. Int. J. Mol. Sci. 2020;21(6):1975. https://doi.org/10.3390/ijms21061975

87. Patel K.R., Scott E., Brown V.A., Gescher A.J., Steward W.P., Brown K. Clinical trials of resveratrol. Ann. NY Acad. Sci. 2011;1215:161–9. https://doi.org/10.1111/j.17496632.2010.05853.x

88. Zhu C.W., Grossman H., Neugroschl J., Parker S., Burden A., Luo X. et al. A randomized, double-blind, placebo-controlled trial of resveratrol with glucose and malate (RGM) to slow the progression of Alzheimer’s disease: A pilot study. Alzheimers Dement. (NY). 2018;4:609–616. https://doi.org/10.1016/j.trci.2018.09.009

89. Feng T., Yamashita T., Shang J., Shi X., Nakano Y., Morihara R. et al. Clinical and Pathological Benefits of Edaravone for Alzheimer’s Disease with Chronic Cerebral Hypoperfusion in a Novel Mouse Model. J. Alzheimers Dis. 2019;71(1):327–339. https://doi.org/10.3233/JAD-190369

90. Sahoo A.K., Dandapat J., Dash U.C., Kanhar S. Features and outcomes of drugs for combination therapy as multi-targets strategy to combat Alzheimer’s disease. J. Ethnopharmacol. 2018;215:42–73. https://doi.org/10.1016/j.jep.2017.12.015

91. Sumbria R.K., Boado R.J., Pardridge W.M. Brain protection from stroke with intravenous TNFα decoy receptor-Trojan horse fusion protein. J. Cereb. Blood Flow Metab. 2012;32(10):1933– 8. https://doi.org/10.1038/jcbfm.2012.97

92. Chang R., Knox J., Chang J., Derbedrossian A., Vasilevko V., Cribbs D. et al. Blood-Brain Barrier Penetrating Biologic TNF-α Inhibitor for Alzheimer’s Disease. Mol. Pharm. 2017;14(7):2340– 2349. https://doi.org/10.1021/acs.molpharmaceut.7b00200

93. Dempsey C., Rubio Araiz A., Bryson K.J., Finucane O., Larkin C., Mills E.L. et al. Inhibiting the NLRP3 inflammasome with MCC950 promotes non-phlogistic clearance of amyloid-β and cognitive function in APP/PS1 mice. Brain Behav. Immun. 2017;61:306–316. https://doi.org/10.1016/j.bbi.2016.12.014

94. Li Q., Dai Z., Cao Y., Wang L. Caspase-1 inhibition mediates neuroprotection in experimental stroke by polarizing M2 microglia/macrophage and suppressing NF-κB activation. Biochem. Biophys. Res. Commun. 2019;513(2):479–485. https://doi.org/10.1016/j.bbrc.2019.03.202

95. Qi Y., Klyubin I., Cuello A.C., Rowan M.J. NLRP3-dependent synaptic plasticity deficit in an Alzheimer’s disease amyloidosis model in vivo. Neurobiol. Dis. 2018;114:24–30. https://doi.org/10.1016/j.nbd.2018.02.016

96. Gueorguieva I., Clark S.R., McMahon C.J., Scarth S., Rothwell N.J., Tyrrell P.J. et al. Pharmacokinetic modelling of interleukin-1 receptor antagonist in plasma and cerebrospinal fluid of patients following subarachnoid haemorrhage. Br. J. Clin. Pharmacol. 2008;65(3):317–25. https://doi.org/10.1111/j.13652125.2007.03026.x

97. Granowitz E.V., Porat R., Mier J.W., Pribble J.P., Stiles D.M., Bloedow D.C. et al. Pharmacokinetics, safety and immunomodulatory effects of human recombinant interleukin-1 receptor antagonist in healthy humans. Cytokine. 1992;4(5):353–60. https://doi.org/10.1016/1043-4666(92)90078-6

98. Galea J., Ogungbenro K., Hulme S., Greenhalgh A., Aarons L., Scarth S. et al. Intravenous anakinra can achieve experimentally effective concentrations in the central nervous system within a therapeutic time window: results of a dose-ranging study. J. Cereb. Blood Flow Metab. 2011;31(2):439–47. https://doi.org/10.1038/jcbfm.2010.103

99. Smith C.J., Hulme S., Vail A., Heal C., Parry-Jones A.R., Scarth S. et al. SCIL-STROKE (Subcutaneous Interleukin-1 Receptor Antagonist in Ischemic Stroke): A Randomized Controlled Phase 2 Trial. Stroke. 2018;49(5):1210–1216. https://doi.org/10.1161/STROKEAHA.118.020750

100. Drieu A., Levard D., Vivien D., Rubio M. Anti-inflammatory treatments for stroke: from bench to bedside. Ther. Adv. Neurol. Disord. 2018;11:1756286418789854. https://doi.org/10.1177/1756286418789854

101. Ma T., Gong K., Ao Q., Yan Y., Song B., Huang H. et al. Intracerebral transplantation of adipose-derived mesenchymal stem cells alternatively activates microglia and ameliorates neuropathological deficits in Alzheimer’s disease mice. Cell. Transplant. 2013;22Suppl.1:S113 — 26. https://doi.org/10.3727/096368913X672181

102. Kim K.S., Kim H.S., Park J.M., Kim H.W., Park M.K., Lee H.S. et al. Long-term immunomodulatory effect of amniotic stem cells in an Alzheimer’s disease model. Neurobiol. Aging. 2013;34(10):2408–20. https://doi.org/10.1016/j.neurobiolaging.2013.03.029

103. Kanazawa M., Miura M., Toriyabe M., Koyama M., Hatakeyama M., Ishikawa M. et al. Microglia preconditioned by oxygen-glucose deprivation promote functional recovery in ischemic rats. Sci. Rep. 2017;7:42582. https://doi.org/10.1038/srep42582


Review

For citations:


Smirnova A.A., Prakhova L.N., Ilves A.G. Immunopathogenesis and immunotherapeutic approaches of neurodegenerative and cerebrovascular diseases with cognitive impairment. The current state of the problem and prospects. Russian neurological journal. 2021;26(5):4-15. (In Russ.) https://doi.org/10.30629/2658-7947-2021-26-5-4-15

Views: 677


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2658-7947 (Print)
ISSN 2686-7192 (Online)