Иммунопатогенез и подходы к разработке иммунотерапии нейродегенеративных и цереброваскулярных заболеваний с когнитивными нарушениями. Современное состояние проблемы и перспективы
https://doi.org/10.30629/2658-7947-2021-26-5-4-15
Аннотация
Когнитивные нарушения (КН) представляют серьезную проблему современного общества. Наиболее частыми причинами развития КН являются нейродегенеративные заболевания (прежде всего, болезнь Альцгеймера (БА) и цереброваскулярные расстройства). В настоящее время стратегия терапии этих заболеваний имеет ограниченную эффективность в отношении восстановления когнитивных функций и течения болезни, хотя и способна замедлять темпы когнитивного снижения.
Понимание иммунопатогенеза нейродегенеративных и цереброваскулярных заболеваний определяет новые мишени и подходы к лечению. Подавление нейровоспаления целесообразно уже на ранних стадиях когнитивного снижения, когда информативность рутинного клинического, лабораторного и инструментального обследования пациентов недостаточна для уточнения причин КН.
Статья суммирует современные представления об иммунопатогенезе БА и хронической церебральной ишемии (ХЦИ). Механизм развития нейровоспаления представлен как каскад последовательных событий, замыкающихся в конечном итоге в самоподдерживающийся воспалительный ответ. В качестве потенциальных точек приложения иммуномодулирующей терапии рассмотрены молекулярные фрагменты, ассоциированные с повреждением, и воспринимающие их специфические рецепторы (паттерн-распознающие рецепторы), внутриклеточная передача сигнала в микроглиальных клетках, цитокины и адгезионные молекулы. Приведены сведения о современном уровне разработанности иммунотерапии БА и ХЦИ и дальнейшие перспективы ее применения.
Об авторах
А. А. СмирноваРоссия
197376, Санкт-Петербург
Л. Н. Прахова
Россия
Прахова Лидия Николаевна
197376, Санкт-Петербург
A. Г. Ильвес
Россия
197376, Санкт-Петербург
Список литературы
1. Rodríguez-Sánchez E., Mora-Simón S., Patino-Alonso M.C., García-García R., Escribano-Hernández A., García-Ortiz L. et al. Prevalence of cognitive impairment in individuals aged over 65 in an urban area: DERIVA study. BMC Neurol. 2011;11:147. https://doi.org/10.1186/1471-2377-11-147
2. Hugo J., Ganguli M. Dementia and cognitive impairment: epidemiology, diagnosis, and treatment. Clin. Geriatr. Med. 2014;30(3):421–42. https://doi.org/10.1016/j.cger.2014.04.001
3. Zeng L., Wang Y., Liu J., Wang L., Weng S., Chen K. et al. Pro-inflammatory cytokine network in peripheral inflammation response to cerebral ischemia. Neurosci Lett. 2013;548:4–9. https://doi.org/10.1016/j.neulet.2013.04.037
4. Литвиненко И.В., Емелин А.Ю., Лобзин В.Ю., Колмакова К.А., Наумов К.М., Лупанов И.А. и др. Амилоидная гипотеза болезни Альцгеймера: прошлое и настоящее, надежды и разочарования. Неврология, нейропсихиатрия, психосоматика. 2019;11(3):4–10. https://doi.org/10.14412/2074-2711-2019-3-4-10
5. Karch C.M., GoateA.M.Alzheimer’s disease risk genes and mechanisms of disease pathogenesis. Biol. Psychiatry. 2015;77(1):43– 51. https://doi.org/10.1016/j.biopsych.2014.05.006
6. Balducci C., Forloni G. Novel targets in Alzheimer’s disease: A special focus on microglia. Pharmacol Res. 2018;130:402– 413. https://doi.org/10.1016/j.phrs.2018.01.017
7. Nordengen K., Kirsebom B.E., Henjum K., Selnes P., Gísladóttir B., Wettergreen M. et al. Glial activation and inflammation along the Alzheimer’s disease continuum. J. Neuroinflammation. 2019;16(1):46. https://doi.org/10.1186/s12974-019-1399-2
8. Glass C.K., Saijo K., Winner B., Marchetto M.C., Gage F.H. Mechanisms underlying inflammation in neurodegeneration. Cell. 2010;140(6):918–34. https://doi.org/10.1016/j.cell.2010.02.016
9. Jin R., Yang G., Li G. Inflammatory mechanisms in ischemic stroke: role of inflammatory cells. J. Leukoc. Biol. 2010;87(5):779–89. https://doi.org/10.1189/jlb.1109766
10. Swardfager W., Lanctôt K., Rothenburg L., Wong A., Cappell J., Herrmann N. Ameta-analysis of cytokines in Alzheimer’s disease. Biol. Psychiatry. 2010;68(10):930–41. https://doi.org/10.1016/j.biopsych.2010.06.012
11. Nucera A., Hachinski V. Cerebrovascular and Alzheimer disease: fellow travelers or partners in crime? J. Neurochem. 2018;144(5):513–516. https://doi.org/10.1111/jnc.14283
12. Lall R., Mohammed R., Ojha U. What are the links between hypoxia and Alzheimer’s disease? Neuropsychiatr. Dis. Treat. 2019;15:1343–1354. https://doi.org/10.2147/NDT.S203103
13. Benakis C., Garcia-Bonilla L., Iadecola C., Anrather J. The role of microglia and myeloid immune cells in acute cerebral ischemia. Front. Cell. Neurosci. 2015;8:461. https://doi.org/10.3389/fncel.2014.00461
14. Heppner F.L., Ransohoff R.M., Becher B. Immune attack: the role of inflammation in Alzheimer disease. Nat. Rev. Neurosci. 2015;16(6):358–72. https://doi.org/10.1038/nrn3880
15. Jevtic S., Sengar A.S., Salter M.W., McLaurin J. The role of the immune system in Alzheimer disease: Etiology and treatment. Ageing. Res. Rev. 2017;40:84–94. https://doi.org/10.1016/j.arr.2017.08.005
16. Banjara M., Ghosh C. Sterile Neuroinflammation and Strategies for Therapeutic Intervention. Int. J. Inflam. 2017;2017:8385961. https://doi.org/10.1155/2017/8385961
17. Frank-Cannon T.C., Alto L.T., McAlpine F.E., Tansey M.G. Does neuroinflammation fan the flame in neurodegenerative diseases? Mol. Neurodegener. 2009;4:47. https://doi.org/10.1186/17501326-4-47
18. Presta I., Vismara M., Novellino F., Donato A., Zaffino P., Scali E. et al. Innate Immunity Cells and the Neurovascular Unit. Int. J. Mol. Sci. 2018;19(12):3856. https://doi.org/10.3390/ijms19123856
19. Paudel Y.N., Angelopoulou E., Piperi C., Othman I., Aamir K., Shaikh M.F. Impact of HMGB1, RAGE, and TLR4 in Alzheimer’s Disease (AD): From Risk Factors to Therapeutic Targeting. Cells. 2020;9(2):383. https://doi.org/10.3390/cells9020383
20. Shabab T., Khanabdali R., Moghadamtousi S.Z., Kadir H.A., Mohan G. Neuroinflammation pathways: a general review. Int. J. Neurosci. 2017;127(7):624–633. https://doi.org/10.1080/00207454.2016.1212854
21. Моргун А.В., Малиновская Н.А., Комлева Ю.К., Лопатина О.Л., Кувачева Н.В., Панина Ю.А. и др. Структурная и функциональная гетерогенность астроцитов головного мозга: роль в нейродегенерации и нейровоспалении. Бюллетень сибирской медицины. 2014;13(5): 138-148.
22. Zenaro E., Piacentino G., Constantin G. The blood-brain barrier in Alzheimer’s disease. Neurobiol. Dis. 2017;107:41–56. https://doi.org/10.1016/j.nbd.2016.07.007
23. Гоголева В.С., Друцкая М.С., Атретханы К.С.-Н. Микроглия в гомеостазе центральной нервной системы и нейровоспалении. Молекулярная биология. 2019;53(5);696–703. https://doi.org/10.1134/S0026898419050057
24. Krabbe G., Halle A., Matyash V., Rinnenthal J.L., Eom G.D., Bernhardt U. et al. Functional impairment of microglia coincides with Beta-amyloid deposition in mice with Alzheimer-like pathology. PLoS One. 2013;8(4):e60921. https://doi.org/10.1371/journal.pone.0060921
25. Arriagada P.V., Growdon J.H., Hedley-Whyte E.T., Hyman B.T. Neurofibrillary tangles but not senile plaques parallel duration and severity of Alzheimer’s disease. Neurology. 1992;42(3 Pt 1):631–9. https://doi.org/10.1212/wnl.42.3.631
26. Duyckaerts C., Bennecib M., Grignon Y., Uchihara T., He Y., Piette F. et al. Modeling the relation between neurofibrillary tangles and intellectual status. Neurobiol. Aging. 1997;18(3):267– 73. https://doi.org/10.1016/s0197-4580(97)80306-5
27. Cho H., Choi J.Y., Hwang M.S., Lee J.H., Kim Y.J., Lee H.M. et al. Tau PET in Alzheimer disease and mild cognitive impairment. Neurology. 2016;87(4):375–83. https://doi.org/10.1212/WNL.0000000000002892
28. Pontecorvo M.J., Devous M.D. Sr., Navitsky M., Lu M., Salloway S., Schaerf F.W. et al.; 18F-AV-1451-A05 investigators. Relationships between flortaucipir PET tau binding and amyloid burden, clinical diagnosis, age and cognition. Brain. 2017;140(3):748–763. https://doi.org/10.1093/brain/aww334
29. Heneka M.T., Kummer M.P., Latz E. Innate immune activation in neurodegenerative disease. Nat. Rev. Immunol. 2014;14(7):463– 77. https://doi.org/10.1038/nri3705
30. Takada E., Okubo K., Yano Y., Iida K., Someda M., Hirasawa A. et al. Molecular Mechanism of Apoptosis by Amyloid β-Protein Fibrils Formed on Neuronal Cells. ACS Chem. Neurosci. 2020;11(5):796–805. https://doi.org/10.1021/acschemneuro.0c00011
31. Yoshiyama Y., Higuchi M., Zhang B., Huang S.M., Iwata N., Saido T.C. et al. Synapselossandmicroglialactivationprecedetangles in a P301S tauopathy mouse model. Neuron. 2007;53(3):337– 51. https://doi.org/10.1016/j.neuron.2007.01.010
32. Ghochikyan A., Mkrtichyan M., Petrushina I., Movsesyan N., Karapetyan A., Cribbs D.H. et al. Prototype Alzheimer’s disease epitope vaccine induced strong Th2-type antiAbeta antibody response with Alum to Quil A adjuvant switch. Vaccine. 2006;24(13):2275–82. https://doi.org/10.1016/j.vaccine.2005.11.039
33. Monsonego A., Nemirovsky A., Harpaz I. CD4 T cells in immunity and immunotherapy of Alzheimer’s disease. Immunology. 2013;139(4):438–46. https://doi.org/10.1111/imm.12103
34. Oberstein T.J., Taha L., Spitzer P., Hellstern J., Herrmann M., Kornhuber J. et al. Imbalance of Circulating Th17 and Regulatory T Cells in Alzheimer’s Disease: A Case Control Study. Front Immunol. 2018;9:1213. https://doi.org/10.3389/fimmu.2018.01213
35. Scaffidi P., Misteli T., Bianchi M.E. Release of chromatin protein HMGB1 by necrotic cells triggers inflammation. Nature. 2002;418(6894):191–5. https://doi.org/10.1038/nature00858
36. Quintana F.J., Cohen I.R. Heat shock proteins as endogenous adjuvants in sterile and septic inflammation. J. Immunol. 2005;175(5):2777–82. https://doi.org/10.4049/jimmunol.175.5.2777
37. Bours M.J., Swennen E.L., Di Virgilio F., Cronstein B.N., Dagnelie P.C. Adenosine 5’-triphosphate and adenosine as endogenous signaling molecules in immunity and inflammation. Pharmacol. Ther. 2006;112(2):358–404. https://doi.org/10.1016/j.pharmthera.2005.04.013
38. Chen G.Y., Nuñez G. Sterile inflammation: sensing and reacting to damage. Nat. Rev. Immunol. 2010;10(12):826–37. https://doi.org/10.1038/nri2873
39. Iadecola C., Anrather J. The immunology of stroke: from mechanisms to translation. Nat. Med. 2011;17(7):796–808. https://doi.org/10.1038/nm.2399
40. Зуев В.А. Иммунологическая теория патогенеза болезни Альцгеймера: факты и гипотезы. Современные проблемы науки и образования. 2019;4.
41. Diamond B., Honig G., Mader S., Brimberg L., Volpe B.T. Brainreactiveantibodiesanddisease.Annu.Rev.Immunol.2013;31:345– 85. https://doi.org/10.1146/annurev-immunol-020711-075041
42. Shibata D., Cain K., Tanzi P., Zierath D., Becker K. Myelin basic protein autoantibodies, white matter disease and stroke outcome. J. Neuroimmunol. 2012;252(1–2):106–12. https://doi.org/10.1016/j.jneuroim.2012.08.006
43. Комлева Ю.К., Кувачева Н.В., Лопатина О.Л., Горина Я.В., Фролова О.В., Тепляшина Е.А. и др. Современные представления о патогенезе болезни Альцгеймера: новые подходы к фармакотерапии (Обзор). Современные технологии в медицине. 2015;4(88):11–19. https://doi.org/10.17691/stm2015.7.3.19
44. Lannfelt L., Möller C., Basun H., Osswald G., Sehlin D., Satlin A. et al. Perspectives on future Alzheimer therapies: amyloid-β protofibrils — a new target for immunotherapy with BAN2401 in Alzheimer’s disease. Alzheimers Res. Ther. 2014;6(2):16. https://doi.org/10.1186/alzrt246
45. Burstein A.H., Zhao Q., Ross J., Styren S., Landen J.W., Ma W.W. et al. Safety and pharmacology of ponezumab (PF04360365) after a single 10-minute intravenous infusion in subjects with mild to moderate Alzheimer disease. Clin. Neuropharmacol. 2013;36(1):8–13. https://doi.org/10.1097/WNF.0b013e318279bcfa
46. Salloway S., Sperling R., Fox N.C., Blennow K., Klunk W., Raskind M. et al.; Bapineuzumab 301 and 302 Clinical Trial Investigators. Two phase 3 trials of bapineuzumab in mild-to-moderate Alzheimer’s disease. N. Engl. J. Med. 2014;370(4):322–33. https://doi.org/10.1056/NEJMoa1304839
47. Panza F., Lozupone M., Seripa D., Imbimbo B.P. Amyloid-β immunotherapy for alzheimer disease: Is it now a long shot? Ann. Neurol. 2019;85(3):303–315. https://doi.org/10.1002/ana.25410
48. Mintun M.A., Lo A.C., Duggan Evans C., Wessels A.M., Ardayfio P.A., Andersen S.W. et al. Donanemab in Early Alzheimer’s Disease. N. Engl. J. Med. 2021;Mar 13. https://doi.org/10.1056/NEJMoa2100708
49. Barrera-Ocampo A., Lopera F. Amyloid-beta immunotherapy: the hope for Alzheimer disease? Colomb. Med. (Cali). 2016;47(4):203–212.
50. Imbimbo B.P., Watling M. Investigational BACE inhibitors for the treatment of Alzheimer’s disease. Expert Opin. Investig. Drugs. 2019;28(11):967–975. https://doi.org/10.1080/13543784.2019.1683160
51. Panza F., Solfrizzi V., Seripa D., Imbimbo B.P., Lozupone M., Santamato A. et al. Tau-Centric Targets and Drugs in Clinical Development for the Treatment of Alzheimer’s Disease. Biomed. Res. Int. 2016;2016:3245935. https://doi.org/10.1155/2016/3245935
52. Novak P., Schmidt R., Kontsekova E., Zilka N., Kovacech B., Skrabana R. et al. Safety and immunogenicity of the tau vaccine AADvac1 in patients with Alzheimer’s disease: a randomised, double-blind, placebo-controlled, phase 1 trial. Lancet Neurol. 2017;16(2):123–134. https://doi.org/10.1016/S14744422(16)30331-3
53. Wischik C.M., Harrington C.R., Storey J.M. Tau-aggregation inhibitor therapy for Alzheimer’s disease. Biochem. Pharmacol. 2014;88(4):529–39. https://doi.org/10.1016/j.bcp.2013.12.008
54. Carrasco-Gallardo C., Farías G.A., Fuentes P., Crespo F., Maccioni R.B. Can nutraceuticals prevent Alzheimer’s disease? Potential therapeutic role of a formulation containing shilajit and complex B vitamins. Arch. Med. Res. 2012;43(8):699–704. https://doi.org/10.1016/j.arcmed.2012.10.010
55. Cornejo A., Jiménez J.M., Caballero L., Melo F., Maccioni R.B. Fulvic acid inhibits aggregation and promotes disassembly of tau fibrils associated with Alzheimer’s disease. J. Alzheimers Dis. 2011;27(1):143–53. https://doi.org/10.3233/JAD-2011-110623
56. Puzzo D., Argyrousi E.K., Staniszewski A., Zhang H., Calcagno E., Zuccarello E. et al. Tau is not necessary for amyloidβ-induced synaptic and memory impairments. J. Clin. Invest. 2020;130(9):4831–4844. https://doi.org/10.1172/JCI137040
57. Nishibori M., Mori S, Takahashi HK. Anti-HMGB1 monoclonal antibody therapy for a wide range of CNS and PNS diseases. J. Pharmacol. Sci. 2019;140(1):94–101. https://doi.org/10.1016/j.jphs.2019.04.006
58. Liu K., Mori S., Takahashi H.K., Tomono Y., Wake H., Kanke T. et al. Anti-high mobility group box 1 monoclonal antibody ameliorates brain infarction induced by transient ischemia in rats. FASEB J. 2007;21(14):3904–16. https://doi.org/10.1096/fj.078770com
59. Zhang J., Takahashi H.K., Liu K., Wake H., Liu R., Maruo T. et al. Anti-high mobility group box-1 monoclonal antibody protects the blood-brain barrier from ischemia-induced disruption in rats. Stroke. 2011;42(5):1420–8. https://doi.org/10.1161/STROKEAHA.110.598334
60. Paudel Y.N., Angelopoulou E., Semple B., Piperi C., Othman I., Shaikh M.F. Potential Neuroprotective Effect of the HMGB1 Inhibitor Glycyrrhizin in Neurological Disorders. ACS Chem. Neurosci. 2020;11(4):485–500. https://doi.org/10.1021/acschemneuro.9b00640
61. Fujita K., Motoki K., Tagawa K., Chen X., Hama H., Nakajima K. et al. HMGB1, a pathogenic molecule that induces neurite degeneration via TLR4-MARCKS, is a potential therapeutic target for Alzheimer’s disease. Sci. Rep. 2016;6:31895. https://doi.org/10.1038/srep31895
62. Arbeloa J., Pérez-Samartín A., Gottlieb M., Matute C. P2X7 receptor blockade prevents ATP excitotoxicity in neurons and reduces brain damage after ischemia. Neurobiol Dis. 2012;45(3):954–61. https://doi.org/10.1016/j.nbd.2011.12.014
63. Diaz-Hernandez J.I., Gomez-Villafuertes R., León-Otegui M., Hontecillas-Prieto L., Del Puerto A., Trejo J.L. et al. In vivo P2X7 inhibition reduces amyloid plaques inAlzheimer’s disease through GSK3β and secretases. Neurobiol. Aging. 2012;33(8):1816–28. https://doi.org/10.1016/j.neurobiolaging.2011.09.040
64. Eser A., Colombel J.F., Rutgeerts P., Vermeire S., Vogelsang H., Braddock M. et al. Safety and Efficacy of an Oral Inhibitor of the Purinergic Receptor P2X7 in Adult Patients with Moderately to Severely Active Crohn’s Disease: A Randomized Placebo-controlled, Double-blind, Phase IIa Study. Inflamm. Bowel. Dis. 2015;21(10):2247–53. https://doi.org/10.1097/MIB.0000000000000514
65. Andresen L., Theodorou K., Grünewald S., Czech-Zechmeister B., Könnecke B., Lühder F. et al. Evaluation of the Therapeutic Potential of Anti-TLR4-Antibody MTS510 in Experimental Stroke and Significance of Different Routes of Application. PLoS One. 2016;11(2):e0148428. https://doi.org/10.1371/journal.pone.0148428
66. Fernández G., Moraga A., Cuartero M.I., García-Culebras A., Peña-Martínez C., Pradillo J.M. et al. TLR4-Binding DNA Aptamers Show a Protective Effect against Acute Stroke in Animal Models. Mol. Ther. 2018;26(8):2047–2059. https://doi.org/10.1016/j.ymthe.2018.05.019
67. Ye Y., Jin T., Zhang X., Zeng Z., Ye B., Wang J. et al. Meisoindigo Protects Against Focal Cerebral Ischemia-Reperfusion Injury by Inhibiting NLRP3 Inflammasome Activation and Regulating Microglia/Macrophage Polarization via TLR4/NF-κB Signaling Pathway. Front Cell. Neurosci. 2019;13:553. https://doi.org/10.3389/fncel.2019.00553
68. Cui W., Sun C., Ma Y., Wang S., Wang X., Zhang Y. Inhibition of TLR4 Induces M2 Microglial Polarization and Provides Neuroprotection via the NLRP3 Inflammasome in Alzheimer’s Disease. Front Neurosci. 2020;14:444. https://doi.org/10.3389/fnins.2020.00444
69. Deane R., Du Yan S., Submamaryan R.K., LaRue B., Jovanovic S., Hogg E. et al. RAGE mediates amyloid-beta peptide transport across the blood-brain barrier and accumulation in brain. Nat. Med. 2003;9(7):907–13. https://doi.org/10.1038/nm890
70. Webster S.J., Mruthinti S., Hill W.D., Buccafusco J.J., Terry A.V. Jr. An aqueous orally active vaccine targeted against a RAGE/AB complex as a novel therapeutic for Alzheimer’s disease. Neuromolecular. Med. 2012;14(2):119–30. https://doi.org/10.1007/s12017-012-8176-z
71. Galasko D., Bell J., Mancuso J.Y., Kupiec J.W., Sabbagh M.N., van Dyck C. et al.; Alzheimer’s Disease Cooperative Study. Clinical trial of an inhibitor of RAGE-Aβ interactions in Alzheimer disease. Neurology. 2014;82(17):1536–42. https://doi.org/10.1212/WNL.0000000000000364
72. Raza S.S., Khan M.M., Ahmad A., Ashafaq M., Khuwaja G., Tabassum R. et al. Hesperidin ameliorates functional and histological outcome and reduces neuroinflammation in experimental stroke. Brain Res. 2011;1420:93–105. https://doi.org/10.1016/j. brainres.2011.08.047
73. Yang Y., Liu H., Zhang H., Ye Q., Wang J., Yang B. et al. ST2/IL-33-Dependent Microglial Response Limits Acute Ischemic Brain Injury. J. Neurosci. 2017;37(18):4692–4704. https://doi.org/10.1523/JNEUROSCI.3233-16.2017
74. Liu X., Liu J., Zhao S., Zhang H., Cai W., Cai M. et al. Interleukin-4 Is Essential for Microglia/Macrophage M2 Polarization and Long-Term Recovery After Cerebral Ischemia. Stroke. 2016;47(2):498–504. https://doi.org/10.1161/STROKEAHA.115.012079
75. Fu A.K., Hung K.W., Yuen M.Y., Zhou X., Mak D.S., Chan I.C. et al. IL-33 ameliorates Alzheimer’s disease-like pathology and cognitive decline. Proc. Natl. Acad. Sci. USA. 2016;113(19):E2705– 13. https://doi.org/10.1073/pnas.1604032113
76. Fu Y., Yan Y. Emerging Role of Immunity in Cerebral Small Vessel Disease. Front Immunol. 2018;9:67. https://doi.org/10.3389/fimmu.2018.00067
77. Liu Z., Ran Y., Huang S., Wen S., Zhang W., Liu X. et al. Curcumin Protects against Ischemic Stroke by Titrating Microglia/Macrophage Polarization. Front Aging. Neurosci. 2017;9:233. https://doi.org/10.3389/fnagi.2017.00233
78. He Q., Li Z., Wang Y., Hou Y., Li L., Zhao J. Resveratrol alleviates cerebral ischemia/reperfusion injury in rats by inhibiting NLRP3 inflammasome activation through Sirt1-dependent autophagy induction. Int. Immunopharmacol. 2017;50:208–215. https://doi.org/10.1016/j.intimp.2017.06.029
79. Lei J., Chen Q. Resveratrol attenuates brain damage in permanent focal cerebral ischemia via activation of PI3K/Akt signaling pathway in rats. Neurol. Res. 2018;40(12):1014–1020. https://doi.org/10.1080/01616412.2018.1509826
80. Sheng Z., Liu Y., Li H., Zheng W., Xia B., Zhang X. et al. Efficacy of Minocycline in Acute Ischemic Stroke: A Systematic Review and Meta-Analysis of Rodent and Clinical Studies. Front Neurol. 2018;9:1103. https://doi.org/10.3389/fneur.2018.01103
81. Corpas R., Griñán-Ferré C., Rodríguez-Farré E., Pallàs M., Sanfeliu C. Resveratrol Induces Brain Resilience Against Alzheimer Neurodegeneration Through Proteostasis Enhancement. Mol. Neurobiol. 2019;56(2):1502–1516. https://doi.org/10.1007/s12035-018-1157-y
82. Garwood C.J., Cooper J.D., Hanger D.P., Noble W. Anti-inflammatory impact of minocycline in a mouse model of tauopathy. Front Psychiatry. 2010;1:136. https://doi.org/10.3389/fpsyt.2010.00136
83. Lampl Y., Boaz M., Gilad R., Lorberboym M., Dabby R., Rapoport A. et al. Minocycline treatment in acute stroke: an openlabel, evaluator-blinded study. Neurology. 2007;69(14):1404–10. https://doi.org/10.1212/01.wnl.0000277487.04281.db
84. Padma Srivastava M.V., Bhasin A., Bhatia R., Garg A., Gaikwad S., Prasad K. et al. Efficacy of minocycline in acute ischemic stroke: a single-blinded, placebo-controlled trial. Neurol. India. 2012;60(1):23–8. https://doi.org/10.4103/00283886.93584
85. Howard R., Zubko O., Gray R., Bradley R., Harper E., Kelly L. et al. Minocycline 200 mg or 400 mg versus placebo for mild Alzheimer’s disease: the MADE Phase II, three-arm RCT. Southampton (UK): NIHR Journals Library; 2020;Apr. https://doi.org/10.3310/eme07020
86. Chainoglou E., Hadjipavlou-Litina D. Curcumin in Health and Diseases: Alzheimer’s Disease and Curcumin Analogues, Derivatives, and Hybrids. Int. J. Mol. Sci. 2020;21(6):1975. https://doi.org/10.3390/ijms21061975
87. Patel K.R., Scott E., Brown V.A., Gescher A.J., Steward W.P., Brown K. Clinical trials of resveratrol. Ann. NY Acad. Sci. 2011;1215:161–9. https://doi.org/10.1111/j.17496632.2010.05853.x
88. Zhu C.W., Grossman H., Neugroschl J., Parker S., Burden A., Luo X. et al. A randomized, double-blind, placebo-controlled trial of resveratrol with glucose and malate (RGM) to slow the progression of Alzheimer’s disease: A pilot study. Alzheimers Dement. (NY). 2018;4:609–616. https://doi.org/10.1016/j.trci.2018.09.009
89. Feng T., Yamashita T., Shang J., Shi X., Nakano Y., Morihara R. et al. Clinical and Pathological Benefits of Edaravone for Alzheimer’s Disease with Chronic Cerebral Hypoperfusion in a Novel Mouse Model. J. Alzheimers Dis. 2019;71(1):327–339. https://doi.org/10.3233/JAD-190369
90. Sahoo A.K., Dandapat J., Dash U.C., Kanhar S. Features and outcomes of drugs for combination therapy as multi-targets strategy to combat Alzheimer’s disease. J. Ethnopharmacol. 2018;215:42–73. https://doi.org/10.1016/j.jep.2017.12.015
91. Sumbria R.K., Boado R.J., Pardridge W.M. Brain protection from stroke with intravenous TNFα decoy receptor-Trojan horse fusion protein. J. Cereb. Blood Flow Metab. 2012;32(10):1933– 8. https://doi.org/10.1038/jcbfm.2012.97
92. Chang R., Knox J., Chang J., Derbedrossian A., Vasilevko V., Cribbs D. et al. Blood-Brain Barrier Penetrating Biologic TNF-α Inhibitor for Alzheimer’s Disease. Mol. Pharm. 2017;14(7):2340– 2349. https://doi.org/10.1021/acs.molpharmaceut.7b00200
93. Dempsey C., Rubio Araiz A., Bryson K.J., Finucane O., Larkin C., Mills E.L. et al. Inhibiting the NLRP3 inflammasome with MCC950 promotes non-phlogistic clearance of amyloid-β and cognitive function in APP/PS1 mice. Brain Behav. Immun. 2017;61:306–316. https://doi.org/10.1016/j.bbi.2016.12.014
94. Li Q., Dai Z., Cao Y., Wang L. Caspase-1 inhibition mediates neuroprotection in experimental stroke by polarizing M2 microglia/macrophage and suppressing NF-κB activation. Biochem. Biophys. Res. Commun. 2019;513(2):479–485. https://doi.org/10.1016/j.bbrc.2019.03.202
95. Qi Y., Klyubin I., Cuello A.C., Rowan M.J. NLRP3-dependent synaptic plasticity deficit in an Alzheimer’s disease amyloidosis model in vivo. Neurobiol. Dis. 2018;114:24–30. https://doi.org/10.1016/j.nbd.2018.02.016
96. Gueorguieva I., Clark S.R., McMahon C.J., Scarth S., Rothwell N.J., Tyrrell P.J. et al. Pharmacokinetic modelling of interleukin-1 receptor antagonist in plasma and cerebrospinal fluid of patients following subarachnoid haemorrhage. Br. J. Clin. Pharmacol. 2008;65(3):317–25. https://doi.org/10.1111/j.13652125.2007.03026.x
97. Granowitz E.V., Porat R., Mier J.W., Pribble J.P., Stiles D.M., Bloedow D.C. et al. Pharmacokinetics, safety and immunomodulatory effects of human recombinant interleukin-1 receptor antagonist in healthy humans. Cytokine. 1992;4(5):353–60. https://doi.org/10.1016/1043-4666(92)90078-6
98. Galea J., Ogungbenro K., Hulme S., Greenhalgh A., Aarons L., Scarth S. et al. Intravenous anakinra can achieve experimentally effective concentrations in the central nervous system within a therapeutic time window: results of a dose-ranging study. J. Cereb. Blood Flow Metab. 2011;31(2):439–47. https://doi.org/10.1038/jcbfm.2010.103
99. Smith C.J., Hulme S., Vail A., Heal C., Parry-Jones A.R., Scarth S. et al. SCIL-STROKE (Subcutaneous Interleukin-1 Receptor Antagonist in Ischemic Stroke): A Randomized Controlled Phase 2 Trial. Stroke. 2018;49(5):1210–1216. https://doi.org/10.1161/STROKEAHA.118.020750
100. Drieu A., Levard D., Vivien D., Rubio M. Anti-inflammatory treatments for stroke: from bench to bedside. Ther. Adv. Neurol. Disord. 2018;11:1756286418789854. https://doi.org/10.1177/1756286418789854
101. Ma T., Gong K., Ao Q., Yan Y., Song B., Huang H. et al. Intracerebral transplantation of adipose-derived mesenchymal stem cells alternatively activates microglia and ameliorates neuropathological deficits in Alzheimer’s disease mice. Cell. Transplant. 2013;22Suppl.1:S113 — 26. https://doi.org/10.3727/096368913X672181
102. Kim K.S., Kim H.S., Park J.M., Kim H.W., Park M.K., Lee H.S. et al. Long-term immunomodulatory effect of amniotic stem cells in an Alzheimer’s disease model. Neurobiol. Aging. 2013;34(10):2408–20. https://doi.org/10.1016/j.neurobiolaging.2013.03.029
103. Kanazawa M., Miura M., Toriyabe M., Koyama M., Hatakeyama M., Ishikawa M. et al. Microglia preconditioned by oxygen-glucose deprivation promote functional recovery in ischemic rats. Sci. Rep. 2017;7:42582. https://doi.org/10.1038/srep42582
Рецензия
Для цитирования:
Смирнова А.А., Прахова Л.Н., Ильвес A.Г. Иммунопатогенез и подходы к разработке иммунотерапии нейродегенеративных и цереброваскулярных заболеваний с когнитивными нарушениями. Современное состояние проблемы и перспективы. Российский неврологический журнал. 2021;26(5):4-15. https://doi.org/10.30629/2658-7947-2021-26-5-4-15
For citation:
Smirnova A.A., Prakhova L.N., Ilves A.G. Immunopathogenesis and immunotherapeutic approaches of neurodegenerative and cerebrovascular diseases with cognitive impairment. The current state of the problem and prospects. Russian neurological journal. 2021;26(5):4-15. (In Russ.) https://doi.org/10.30629/2658-7947-2021-26-5-4-15