Preview

Российский неврологический журнал

Расширенный поиск
Доступ открыт Открытый доступ  Доступ закрыт Только для подписчиков

Прогрессирующие мышечные дистрофии

https://doi.org/10.30629/2658-7947-2021-26-2-43-57

Полный текст:

Аннотация

Прогрессирующие мышечные дистрофии представляют собой клинически и генетически гетеро- генную группу наследственных заболеваний, характеризующихся первичным поражением скелетной мускулатуры невоспалительного характера. Несмотря на то что наследственные миопатии могут дебютировать в любом возрасте и поражать различные группы мышц, у большинства из них имеются общие клинические признаки. Помимо молекулярно-генетических, имеется множество других методов диагностики, помогающих поставить правильный диагноз (исследование креатинкиназы в сыворотке крови, КТ и МРТ пораженных мышц; гистологическое исследование, иммуноблоттинг и иммуноцитохимическое исследование биоптата пораженной мышцы и др.). В настоящее время ведутся исследования по лечению различных прогрессирующих мышечных дистрофий, а для мышечной дистрофии Дюшенна имеются зарегистрированные в России (аталурен) и за рубежом (этеплирсен, голодирсен, вилтоларсен) специфические лекарственные препараты. Представлены основные данные по клинике, диагностике и лечению наиболее распространенных форм прогрессирующих мышечных дистрофий.

Об авторах

В. Е. Китаева
ГБУЗ МО «Московский областной научно-исследовательский клинический институт им. М.Ф. Владимирского»
Россия

Москва



А. С. Котов
ГБУЗ МО «Московский областной научно-исследовательский клинический институт им. М.Ф. Владимирского»
Россия

Москва



М. С. Бунак
ГБУЗ МО «Московский областной научно-исследовательский клинический институт им. М.Ф. Владимирского»
Россия

Москва



Список литературы

1. Казаков В.М., Скоромец А.А., Руденко Д.И., Стучевская Т.Р., Колынин В.О. Наследственные нервно-мышечные болезни. Часть 1. Мышечные дистрофии: дистрофинопатии, эмеринопатии и лице-лопаточно-плечевая формы. Российский неврологический журнал. 2019;24(5):4–13. https://doi.org/10.30629/2658-7947-2019-24-5-4–13

2. Flanigan K.M., Ceco E., Lamar K.M., Kaminoh Y., Dunn D.M., Mendell J.R. et al.; United Dystrophinopathy Project. LTBP4 genotype predicts age of ambulatory loss in Duchenne muscular dystrophy. Ann Neurol. 2013;73(4):481–8. https://doi.org/10.1002/ana.23819. Epub 2013 Feb 20. PMID: 23440719; PMCID: PMC4106425

3. Darras B.T., Urion D.K., Ghosh P.S. Dystrophinopathies. 2000 Sep 5 [updated 2018 Apr 26]. In: Adam M.P., Ardinger H.H., Pagon R.A., Wallace S.E., Bean L.J.H., Stephens K., Amemiya A., editors. GeneReviews® [Internet]. Seattle (WA): University of Washington, Seattle; 1993–2020. PMID: 20301298

4. Anthony K., Feng L., Arechavala-Gomeza V., Guglieri M., Straub V., Bushby K. et al. Exon skipping quantifi cation by quantitative reverse-transcription polymerase chain reaction in Duchenne muscular dystrophy patients treated with the antisense oligomer eteplirsen. Hum Gene Ther Methods. 2012;23(5):336–45. https://doi.org/10.1089/hgtb.2012.117. PMID: 23075107

5. FDA grants accelerated approval to first drug for Duchenne muscular dystrophy. US Food and Drug Administration website. http://www.fda.gov/NewsEvents/Newsroom/PressAnnouncements/ucm521263.htm. Published September 19, 2016. Accessed September 19, 2016

6. Woodcock J. NDA approval letter: Exondys 51 (eteplirsen NDA 206488). US Food and Drug Administration website. http://www.accessdata.fda.gov/drugsatfda_docs/appletter/2016/206488Orig1s000ltr.pdf. Published September 19, 2019. Accessed September 19, 2019

7. Anwar S., Yokota T. Golodirsen for Duchenne muscular dystrophy. Drugs Today (Barc). 2020;56(8):491–504. https://doi.org/10.1358/dot.2020.56.8.3159186. PMID: 33025945

8. Clemens P.R., Rao V.K., Connolly A.M., Harper A.D., Mah J.K., Smith E.C., McDonald C.M., Zaidman C.M., Morgenroth L.P., Osaki H., Satou Y., Yamashita T., Hoff man EP; CINRG DNHS Investigators. Safety, Tolerability, and Efficacy of Viltolarsen in Boys With Duchenne Muscular Dystrophy Amenable to Exon 53 Skipping: A Phase 2 Randomized Clinical Trial. JAMA Neurol. 2020;77(8):982–991. https://doi.org/10.1001/jamaneurol.2020.1264. Erratum in: https://doi.org/10.1001/jamaneurol.2020.2025. PMID: 32453377; PMCID: PMC7251505

9. Finkel R.S. Read-through strategies for suppression of nonsense mutations in Duchenne/ Becker muscular dystrophy: aminoglycosides and ataluren (PTC124). J Child Neurol. 2010;25(9):1158–

10. https://doi.org/10.1177/0883073810371129. Epub 2010 Jun 2. PMID: 20519671; PMCID: PMC3674569

11. Mendell J.R., Campbell K., Rodino-Klapac L., Sahenk Z., Shilling C., Lewis S. et al. Dystrophin immunity in Duchenne’s muscular dystrophy. N Engl J Med. 2010;363(15):1429–37. https://doi.org/10.1056/NEJMoa1000228. PMID: 20925545; PMCID: PMC3014106

12. Konieczny P., Swiderski K., Chamberlain J.S. Gene and cellmediated therapies for muscular dystrophy. Muscle Nerve. 2013;47(5):649–63. https://doi.org/10.1002/mus.23738. Epub 2013 Mar 29. PMID: 23553671; PMCID: PMC4077844

13. Bengtsson N.E., Seto J.T., Hall J.K., Chamberlain J.S., Odom G.L. Progress and prospects of gene therapy clinical trials for the muscular dystrophies. Hum Mol Genet. 2016;25(R1):R9–17. https://doi.org/10.1093/hmg/ddv420. Epub 2015 Oct 8. PMID: 26450518; PMCID: PMC4802376

14. Calos M.P. The CRISPR Way to Think about Duchenne’s. N Engl J Med. 2016;374(17):1684–6. https://doi.org/10.1056/NEJMcibr1601383. PMID: 27119241

15. Long C., Amoasii L., Mireault A.A., McAnally J.R., Li H., Sanchez- Ortiz E. et al. Postnatal genome editing partially restores dystrophin expression in a mouse model of muscular dystrophy. Science. 2016;351(6271):400–3. https://doi.org/10.1126/science.aad5725. Epub 2015 Dec 31. PMID: 26721683; PMCID: PMC4760628

16. Nelson C.E., Hakim C.H., Ousterout D.G., Thakore P.I., Moreb E.A., Castellanos Rivera R.M. et al. In vivo genome editing improves muscle function in a mouse model of Duchenne muscular dystrophy. Science. 2016;351(6271):403–7. https://doi.org/10.1126/science.aad5143. Epub 2015 Dec 31. PMID: 26721684; PMCID: PMC4883596

17. Tabebordbar M., Zhu K., Cheng J.K.W., Chew W.L., Widrick J.J., Yan W.X. et al. In vivo gene editing in dystrophic mouse muscle and muscle stem cells. Science. 2016;351(6271):407–411. https://doi.org/10.1126/science.aad5177. Epub 2015 Dec 31. PMID: 26721686; PMCID: PMC4924477

18. Campbell C., McMillan H.J., Mah J.K., Tarnopolsky M., Selby K., McClure T. et al. Myostatin inhibitor ACE-031 treatment of ambulatory boys with Duchenne muscular dystrophy: Results of a randomized, placebo-controlled clinical trial. Muscle Nerve. 2017;55(4):458–464. https://doi.org/10.1002/mus.25268. Epub 2016 Dec 23. PMID: 27462804

19. Blau H.M. Cell therapies for muscular dystrophy. N Engl J Med. 2008;359(13):1403–5. https://doi.org/10.1056/NEJMcibr0805708. PMID: 18815403

20. Cerletti M., Jurga S., Witczak C.A., Hirshman M.F., Shadrach J.L., Goodyear L.J. et al. Highly effi cient, functional engraftment of skeletal muscle stem cells in dystrophic muscles. Cell. 2008;134(1):37–47. https://doi.org/10.1016/j.cell.2008.05.049. PMID: 18614009; PMCID: PMC3665268

21. Buyse G.M., Voit T., Schara U., Straathof C.S.M., D’Angelo M.G., Bernert G. et al.; DELOS Study Group. Efficacy of idebenone on respiratory function in patients with Duchenne muscular dystrophy not using glucocorticoids (DELOS): a double-blind randomised placebo-controlled phase 3 trial. Lancet. 2015;385(9979):1748–1757. https://doi.org/10.1016/S0140-6736(15)60025-3. Epub 2015 Apr 20. PMID: 25907158

22. Казаков В.М., Скоромец А.А., Руденко Д.И., Стучевская Т.Р., Колынин В.О. Наследственные нервно-мышечные болезни. Часть 2. Мышечные дистрофии: конечностно-поясные, дистальные, окулофарингеальная и окулофарингодистальная формы. Российский неврологический журнал. 2020;25(1):13–22. https://doi.org/10.30629/2658-7947-2020-25-1-13-22

23. Bonne G., Rivier F., Hamroun D. The 2019 version of the gene table of neuromuscular disorders (nuclear genome). Neuromuscul Disord. 2018 Dec;28(12):1031–1063. https://doi.org/10.1016/j.nmd.2018.09.006. Epub 2018 Sep 27. PMID: 30472062

24. Pegoraro E., Hoff man E.P. Limb-Girdle Muscular Dystrophy Overview. 2000 Jun 8 [Updated 2012 Aug 30]. In: Adam M.P., Ardinger H.H., Pagon R.A. et al., editors. GeneReviews® [Internet]. Seattle (WA): University of Washington, Seattle; 1993–2020. Available from: https://www.ncbi.nlm.nih.gov/books/NBK1408/

25. Казаков В.М., Скоромец А.А., Руденко Д.И., Стучевская Т.Р., Колынин В.О. Наследственные нервно-мышечные болезни. Часть 3. Мышечные дистрофии: патогенез, диагностика и лечение. Российский неврологический журнал. 2020;25(2):04– 10. https://doi.org/10.30629/2658-7947-2020-25-2-04-10

26. Bartoli M., Roudaut C., Martin S., Fougerousse F., Suel L., Poupiot J. et al. Safety and effi cacy of AAV-mediated calpain 3 gene transfer in a mouse model of limb-girdle muscular dystrophy type 2A. Mol Ther. 2006;13(2):250–9. https://doi.org/10.1016/j.ymthe.2005.09.017. Epub 2005 Nov 14. PMID: 16290124

27. Mendell J.R., Rodino-Klapac L.R., Rosales X.Q., Coley B.D., Galloway G., Lewis S. et al. Sustained alpha-sarcoglycan gene expression after gene transfer in limb-girdle muscular dystrophy, type 2D. Ann Neurol. 2010;68(5):629–38. https://doi.org/10.1002/ana.22251. PMID: 21031578; PMCID: PMC2970162

28. Herson S., Hentati F., Rigolet A., Behin A., Romero N.B., Leturcq F. et al. A phase I trial of adeno-associated virus serotype 1-γ-sarcoglycan gene therapy for limb girdle muscular dystrophy type 2C. Brain. 2012;135(2):483–492. https://doi.org/10.1093/brain/awr342

29. Bartoli M., Gicquel E., Barrault L., Soheili T., Malissen M., Malissen B. et al. Mannosidase I inhibition rescues the human alpha-sarcoglycan R77C recurrent mutation. Hum Mol Genet. 2008;17(9):1214–21. https://doi.org/10.1093/hmg/ddn029. Epub 2008 Feb 5. PMID: 18252745

30. Walker G., Butterfi eld R., Mathews K., Servais L., Day J., Gidaro T. et al. Results of a phase 1b/2 study of atyr1940 in adolescents and young adults with early onset facioscapulohumeral muscular dystrophy (fshd) (atyr1940-c-003). Neuromuscul. Disord. 2017;27:S199. https://doi.org/10.1016/j.nmd.2017.06.381

31. Bonne G., Leturcq F., Ben Yaou R. Emery-Dreifuss Muscular Dystrophy. 2004 Sep 29 [updated 2019 Aug 15]. In: Adam M.P., Ardinger H.H., Pagon R.A., Wallace S.E., Bean L.J.H., Stephens K., Amemiya A., editors. GeneReviews® [Internet]. Seattle (WA): University of Washington, Seattle; 1993–2020. PMID: 20301609

32. Preston M.K., Tawil R., Wang L.H. Facioscapulohumeral Muscular Dystrophy. 1999 Mar 8 [Updated 2020 Feb 6]. In: Adam M.P., Ardinger H.H., Pagon R.A. et al., editors. GeneReviews ® [Internet]. Seattle (WA): University of Washington, Seattle; 1993–2020. Available from: https://www.ncbi.nlm.nih.gov/books/NBK1443/

33. Wallace L.M., Saad N.Y., Pyne N.K., Fowler A.M., Eidahl J.O., Domire J.S. et al. Pre-clinical Safety and Off -Target Studies to Support Translation of AAV-Mediated RNAi Therapy for FSHD. Mol Ther Methods Clin Dev. 2017;8:121–130. https://doi.org/10.1016/j.omtm.2017.12.005. PMID: 29387734; PMCID: PMC5787672

34. Ino H., Takahashi N., Terao T., Igarashi H., Sarai N. Safety, tolerability, pharmacokinetics, and pharmacodynamics of losmapimod in healthy Japanese volunteers. Clin Pharmacol Drug Dev. 2015;4(4):262–9. https://doi.org/10.1002/cpdd.190. Epub 2015 May 7. PMID: 27136906

35. Oliva J., Galasinski S., Richey A., Campbell A.E., Meyers M.J., Modi N. et al. Clinically Advanced p38 Inhibitors Suppress DUX4 Expression in Cellular and Animal Models of Facioscapulohumeral Muscular Dystrophy. J Pharmacol Exp Ther. 2019;370(2):219–230. https://doi.org/10.1124/jpet.119.259663. Epub 2019 Jun 12. PMID: 31189728; PMCID: PMC6652132

36. Argentati C., Morena F., Bazzucchi M., Armentano I., Emiliani C., Martino S. Adipose Stem Cell Translational Applications: From Bench-to-Bedside. Int J Mol Sci. 2018;19(11):3475. https://doi.org/10.3390/ijms19113475. PMID: 30400641; PMCID: PMC6275042

37. Colson S.S., Benchortane M., Tanant V., Faghan J.P., Fournier- Mehouas M., Benaïm C. et al. Neuromuscular electrical stimulation training: a safe and eff ective treatment for facioscapulohumeral muscular dystrophy patients. Arch Phys Med Rehabil. 2010;91(5):697–702. https://doi.org/10.1016/j.apmr.2010.01.019. PMID: 20434605

38. Bird T.D. Myotonic Dystrophy Type 1. 1999 Sep 17 [Updated 2019 Oct 3]. In: Adam M.P., Ardinger H.H., Pagon R.A. et al., editors. GeneReviews® [Internet]. Seattle (WA): University of Washington, Seattle; 1993–2020. Available from: https://www.ncbi.nlm.nih.gov/books/NBK1165/

39. Van der Ven P.F., Jansen G., van Kuppevelt T.H., Perryman M.B., Lupa M., Dunne P.W., ter Laak H.J., Jap P.H., Veerkamp J.H., Epstein H.F. et al. Myotonic dystrophy kinase is a component of neuromuscular junctions. Hum Mol Genet. 1993;2(11):1889–94. https://doi.org/10.1093/hmg/2.11.1889. PMID: 8281152

40. Sergeant N., Sablonnière B., Schraen-Maschke S., Ghestem A., Maurage C.A., Wattez A. et al. Dysregulation of human brain microtubule-associated tau mRNA maturation in myotonic dystrophy type 1. Hum Mol Genet. 2001;10(19):2143–55. https://doi.org/10.1093/hmg/10.19.2143. PMID: 11590131

41. Jauvin D., Chrétien J., Pandey S.K., Martineau L., Revillod L., Bassez G. et al. Targeting DMPK with Antisense Oligonucleotide Improves Muscle Strength in Myotonic Dystrophy Type 1 Mice. Mol Ther Nucleic Acids. 2017;7:465–474. https://doi.org/10.1016/j.omtn.2017.05.007. Epub 2017 May 17. PMID: 28624222; PMCID: PMC5453865

42. Horrigan J., Gomes T.B., Snape M., Nikolenko N., McMorn A., Evans S. et al. A Phase 2 Study of AMO-02 (Tideglusib) in Congenital and Childhood-Onset Myotonic Dystrophy Type 1 (DM1). Pediatr Neurol. 2020;112:84–93. https://doi.org/10.1016/j.pediatrneurol.2020.08.001. Epub 2020 Aug 5. PMID: 32942085

43. Schoser B. Myotonic Dystrophy Type 2. 2006 Sep 21 [Updated 2020 Mar 19]. In: Adam M.P., Ardinger H.H., Pagon R.A. et al., editors. GeneReviews® [Internet]. Seattle (WA): University of Washington, Seattle; 1993–2020. Available from: https://www.ncbi.nlm.nih.gov/books/NBK1466/

44. Maurage C.A., Udd B., Ruchoux M.M., Vermersch P., Kalimo H., Krahe R. et al. Similar brain tau pathology in DM2/PROMM and DM1/Steinert disease. Neurology. 2005;65(10):1636–8. https://doi.org/10.1212/01.wnl.0000184585.93864.4e. PMID: 16301494

45. Trollet C., Boulinguiez A., Roth F., Stojkovic T., Butler- Browne G., Evangelista T. et al. Oculopharyngeal Muscular Dystrophy. 2001 Mar 8 [Updated 2020 Oct 22]. In: Adam M.P., Ardinger H.H., Pagon R.A. et al., editors. GeneReviews® [Internet]. Seattle (WA): University of Washington, Seattle; 1993–2020. Available from: https://www.ncbi.nlm.nih.gov/books/NBK1126/

46. Verheesen P., de Kluijver A., van Koningsbruggen S., de Brij M., de Haard H.J., van Ommen G.J. et al. Prevention of oculopharyngeal muscular dystrophy-associated aggregation of nuclear polyA-binding protein with a single-domain intracellular antibody. Hum Mol Genet. 2006;15(1):105–11. https://doi.org/10.1093/hmg/ddi432. Epub 2005 Nov 30. PMID: 16319127

47. Bao Y.P., Cook L.J., O’Donovan D., Uyama E., Rubinsztein D.C. Mammalian, yeast, bacterial, and chemical chaperones reduce aggregate formation and death in a cell model of oculopharyngeal muscular dystrophy. J Biol Chem. 2002;277(14):12263–9. https://doi.org/10.1074/jbc.M109633200. Epub 2002 Jan 16. PMID: 11796717

48. Bao Y.P., Sarkar S., Uyama E., Rubinsztein D.C. Congo red, doxycycline, and HSP70 overexpression reduce aggregate formation and cell death in cell models of oculopharyngeal muscular dystrophy. J Med Genet. 2004;41(1):47–51. https://doi.org/10.1136/jmg.2003.014548. PMID: 14729833; PMCID: PMC1757258

49. Argov Z., Gliko-Kabir I., Brais B., Caraco Y., Megiddo D. intravenous trehalose improves dysphagia and muscle function in oculopharyngeal muscular dystrophy (OPMD): preliminary results of 24 weeks open label Phase 2 trial (S28.004). Neurology. 2016;86(16S)

50. Malerba A., Klein P., Bachtarzi H., Jarmin S.A., Cordova G., Ferry A. et al. PABPN1 gene therapy for oculopharyngeal muscular dystrophy. Nat Commun. 2017;8:14848. https://doi.org/10.1038/ncomms14848. PMID: 28361972; PMCID: PMC5380963

51. Malerba A., Klein P., Lu-Nguyen N., Cappellari O., Strings- Ufombah V., Harbaran S. et al. Established PABPN1 intranuclear inclusions in OPMD muscle can be efficiently reversed by AAV-mediated knockdown and replacement of mutant expanded PABPN1. Hum Mol Genet. 2019;28(19):3301–3308. https://doi.org/10.1093/hmg/ddz167. PMID: 31294444; PMCID: PMC7343048

52. Abu-Baker A., Kharma N., Perreault J., Grant A., Shekarabi M., Maios C. et al. RNA-Based Therapy Utilizing Oculopharyngeal Muscular Dystrophy Transcript Knockdown and Replacement. Mol Ther Nucleic Acids. 2019;15:12–25. https://doi.org/10.1016/j.omtn.2019.02.003. Epub 2019 Feb 15. PMID: 30831428; PMCID: PMC6403420

53. Périé S., Trollet C., Mouly V., Vanneaux V., Mamchaoui K., Bouazza B. et al. Autologous myoblast transplantation for oculopharyngeal muscular dystrophy: a phase I/IIa clinical study. Mol Ther. 2014;22(1):219–25. https://doi.org/10.1038/mt.2013.155. Epub 2013 Jul 8. PMID: 23831596; PMCID: PMC3978797


Для цитирования:


Китаева В.Е., Котов А.С., Бунак М.С. Прогрессирующие мышечные дистрофии. Российский неврологический журнал. 2021;26(2):43-57. https://doi.org/10.30629/2658-7947-2021-26-2-43-57

For citation:


Kitaeva V.E., Kotov A.S., Bunak M.S. Progressive muscular dystrophies. Russian neurological journal. 2021;26(2):43-57. (In Russ.) https://doi.org/10.30629/2658-7947-2021-26-2-43-57

Просмотров: 90


ISSN 2658-7947 (Print)
ISSN 2686-7192 (Online)