Preview

Russian neurological journal

Advanced search

Type 2 diabetes mellitus in patients with acute ischemiс stroke is associated with a decrease in plasma glutathione levels

https://doi.org/10.30629/2658-7947-2020-25-5-29-35

Abstract

Ischemic stroke (IS) and type 2 diabetes mellitus are factors that aect the homeostasis of low-molecularweight aminothiols (cysteine, homocysteine, glutathione etc.). It has already been shown that IS in the acute period led to a decrease a level of reduced forms of aminothiols, but it is not clear whether type 2 diabetes mellitus has a noticeable eect there.

Objective: to reveal the features of homeostasis of aminothiols in patients with type 2 diabetes mellitus in acute IS.

Material and methods. The study involved 76 patients with primary middle cerebral artery IS in the first 10–24 hours after development of neurological symptoms. Group 1 included 15 patients with IS and type 2 diabetes mellitus, group 2 — 61 patients with IS and stress hyperglycemia. Their total plasma levels of cysteine, homocysteine, and glutathione, their reduced forms, and redox status were determined at admission (in the first 24 hours after IS).

Results. There was a decrease in the level of total glutathione level (1.27 vs. 1.65 μM, p = 0.021), as well as its reduced form (0.03 vs. 0.04 μM, p = 0.007) in patients with IS and type 2 diabetes mellitus. Patients with type 2 diabetes mellitus who had a low redox status of homocysteine (0.65–1.2%) and glutathione (0.7–2.0%) were also characterized by a decrease in total glutathione level (p = 0.02; p = 0.03).

Conclusion. Thus, type 2 diabetes mellitus is associated with a decrease in the level of total glutathione in acute IS. Probably, type 2 diabetes mellitus is characterized by a particular relationship between the metabolism of homocysteine, glutathione and glucose. Therefore, the search for homocysteine-dependent approaches to correct glutathione metabolism in type 2 diabetes mellitus may be of interest as an adjuvant therapy for IS.

About the Authors

M. Yu. Maksimova
Research Center of Neurology
Russian Federation
Moscow


A. V. Ivanov
Federal State Budgetary Scientific Institution «Institute of General Pathology and Pathophysiology»
Russian Federation

Department of Molecular and Cell Pathophysiology

Moscow



K. A. Nikiforova
Federal State Budgetary Scientific Institution «Institute of General Pathology and Pathophysiology»
Russian Federation

Department of Molecular and Cell Pathophysiology

Moscow



F. R. Ochtova
Moscow State Medical and Dental University
Russian Federation

Department of Nervous Diseases 

Moscow



E. T. Suanova
Moscow State Medical and Dental University
Russian Federation

Department of Nervous Diseases 

Moscow



E. D. Virus
Federal State Budgetary Scientific Institution «Institute of General Pathology and Pathophysiology»
Russian Federation

Department of Molecular and Cell Pathophysiology

Moscow



I. S. Zimina
Federal State Budgetary Scientific Institution «Institute of General Pathology and Pathophysiology»
Russian Federation

Department of Molecular and Cell Pathophysiology

Moscow



M. A. Piradov
Research Center of Neurology
Russian Federation
Moscow


A. A. Kubatiev
Federal State Budgetary Scientific Institution «Institute of General Pathology and Pathophysiology»
Russian Federation

Department of Molecular and Cell Pathophysiology

Moscow



References

1. Chen R., Ovbiagele B., Feng W. Diabetes and Stroke: Epidemiology, Pathophysiology, Pharmaceuticals and Outcomes. Am. J. Med. Sci. 2016;351(4):380–386. https://doi.org/10.1016/j.amjms.2016.01.011

2. Ivanov A.V., Alexandrin V.V., Paltsyn A.A., Nikiforova K.A., Virus E.D., Luzyanin B.P. et al. Plasma low-molecular-weight thiol/disulphide homeostasis as an early indicator of global and focal cerebral ischaemia. Redox Rep. 2017;22:460–466. DOI: 10.1080/13510002.2017.1311464

3. Maksimova M.Y., Ivanov A.V., Virus E.D., Alexandrin V.V., Nikiforova K.A., Bulgakova P.O. et al. Disturbance of thiol/disulfide aminothiols homeostasis in patients with acute ischemic stroke stroke: Preliminary findings. Clin. Neurol. Neurosurg. 2019;183:105393. https://doi.org/10.1016/j.clineuro.2019.105393

4. Duman B.S., Oztürk M., Yilmazeri S., Hatemi H. Thiols, malonaldehyde and total antioxidant status in the Turkish patients with type 2 diabetes mellitus. Tohoku J. Exp. Med. 2003;201:147–155. https://doi.org/10.1620/tjem.201.147

5. Tessier D., Khalil A., Fülöp T. Effects of an oral glucose challenge on free radicals/antioxidants balance in an older population with type 2 diabetes. J. Gerontol. A Biol. Sci. Med. Sci. 1999;54:541–545. https://doi.org/10.1093/gerona/54.11.m541

6. Karolczak K., Kubalczyk P., Głowacki R., Pietruszyński R, Watała C. An inverse relationship between plasma glutathione concentration and fasting glycemia in patients with coronary artery disease and concomitant type 2 diabetes: A pilot study. Adv. Clin. Exp. Med. 2017;26:1359–1366. https://doi.org/10.17219/acem/65441

7. Lutchmansingh F.K., Hsu J.W., Bennett F.I., Badaloo A.V., McFarlane-Anderson N., Gordon-Strachan G.M. et al. Glutathione metabolism in type 2 diabetes and its relationship with microvascular complications and glycemia. PLoS One. 2018;13:e0198626. https://doi.org/10.1371/journal.pone.0198626

8. Brott T., Adams H.P.Jr., Olinger C.P., Marler J.R., Barsan W.G., Biller J. et al. Measurements of acute cerebral infarction: a clinical examination scale. Stroke. 1989;20:864–870. https://doi.org/10.1161/01.str.20.7.864

9. Sulter G., Steen C., De Keyser J. Use of the Barthel index and modified Rankin scale in acute stroke trials. Stroke. 1999;30:1538–1541. https://doi.org/10.1161/01.str.30.8.1538

10. American Diabetes Association. Standards of medical care in diabetes. Diabetes Care. 2019;42(1):S1–193.

11. Cerielo A., Motz E., Cavarape A., Lizzio S., Russo A., Quatraro A. et al. Hyperglycemia counterbalances the antihypertensive effect of glutathione in diabetic patients: evidence linking hypertension and glycemia through the oxidative stress in diabetes mellitus. J. Diabetes Complications. 1997;11:250–255. https://doi.org/10.1016/s1056-8727(97)00021-4

12. Etemad A., Vasudevan R., Aziz A.F., Yusof A.K., Khazaei S., Fawzi N. et al. Analysis of selected glutathione S-transferase gene polymorphisms in Malaysian type 2 diabetes mellitus patients with and without cardiovascular disease. Genet. Mol. Res. 2016;15. https://doi.org/10.4238/gmr.15025845

13. Lu S.C. Glutathione synthesis. Biochim. Biophys. Acta. 2013;1830(5):3143–3153. https://doi.org/10.1016/j.bbagen.2012.09.008

14. Guo J.M., Liu A.J., Zang P., Dong W.Z., Ying L., Wang W. et al. ALDH2 protects against stroke by clearing 4-HNE. Cell. Res. 2013;23(7):915–30. https://doi.org/10.1038/cr.2013.69

15. Jotic A., Covickovic S.N., Kostic V.S., Lalic K., Milicic T., Mijajlovic M. et al. Type 2 diabetic patients with ischemic stroke: decreased insulin sensitivity and decreases in antioxidant enzyme activity are related to different stroke subtypes, Int. J. Endocrinol. 2013;2013:401609. https://doi.org/10.1155/2013/401609

16. Venkat P., Chopp M., Chen J. Blood-Brain Barrier Disruption, Vascular Impairment, and Ischemia/Reperfusion Damage in Diabetic Stroke. J. Am. Heart. Assoc. 2017;6(6):e005819. https://doi.org/10.1161/JAHA.117.005819

17. Poulsen R.C., Knowles H.J., Carr A.J., Hulley P.A. Cell differentiation versus cell death: extracellular glucose is a key determinant of cell fate following oxidative stress exposure. Cell Death Dis. 2014;5:e1074. https://doi.org/10.1038/cddis.2014.52

18. Bruno A., Kent T.A., Coull B.M., Shankar R.R., Saha C., Becker K.J. et al. Treatment of hyperglycemia in ischemic stroke (THIS): a randomized pilot trial. Stroke. 2008;39(2):384–389. https://doi.org/10.1161/STROKEAHA.107.493544

19. Avgerinos K., Tziomalos K. Effects of glucose-lowering agents on ischemic stroke. World J. Diabetes. 2017;8:270–277. https://doi.org/10.4239/wjd.v8.i6.270

20. Robbins M.A., Elias M.F., Budge M.M., Brennan S.L., Elias P.K. Homocysteine, type 2 diabetes mellitus, and cognitive performance: The Maine-Syracuse Study. Clin. Chem. Lab. Med. 2005;43:1101–1106. https://doi.org/10.1515/CCLM.2005.192

21. Das S., Reynolds T., Patnaik A., Rais N., Fink L.M., Fonseca V.A. Plasma homocysteine concentrations in type 2 diabetic patients in India: relationship to body weight. J. Diabetes Complications. 1999;13:200–203. https://doi.org/10.1016/s10568727(99)00045-8

22. Gunawardena H.P., Silva R., Sivakanesan R., Ranasinghe P., Katulanda P. Poor Glycaemic Control Is Associated with Increased Lipid Peroxidation and Glutathione Peroxidase Activity in Type 2 Diabetes Patients. Oxid. Med. Cell. Longev. 2019;9471697. https://doi.org/10.1155/2019/9471697

23. Li G., Liu Y., Li X., Ning Z., Sun Z., Zhang M. et al. Association of PAI-1 4G/5G Polymorphism with Ischemic Stroke in Chinese Patients with Type 2 Diabetes Mellitus. Genet. Test Mol. Biomarkers. 2018;22:554–560. https://doi.org/10.1089/gtmb.2018.0130

24. Nguyen D., Hsu J.W., Jahoor F., Sekhar R.V. Effect of increasing glutathione with cysteine and glycine supplementation on mitochondrial fuel oxidation, insulin sensitivity, and body composition in older HIVinfected patients. J. Clin. Endocrinol. Metab. 2014;99:169–177. https://doi.org/10.1210/jc.2013-2376


Review

For citations:


Maksimova M.Yu., Ivanov A.V., Nikiforova K.A., Ochtova F.R., Suanova E.T., Virus E.D., Zimina I.S., Piradov M.A., Kubatiev A.A. Type 2 diabetes mellitus in patients with acute ischemiс stroke is associated with a decrease in plasma glutathione levels. Russian neurological journal. 2020;25(5):29-35. (In Russ.) https://doi.org/10.30629/2658-7947-2020-25-5-29-35

Views: 1186


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2658-7947 (Print)
ISSN 2686-7192 (Online)