Preview

Russian neurological journal

Advanced search

Extra- versus intracranial atherosclerosis: two facets of the same problem

https://doi.org/10.30629/2658-7947-2022-27-3-11-19

Abstract

Atherosclerosis is a chronic disease of elastic and muscle-elastic type arteries, which occurs due to abnormal lipid and protein metabolism and is accompanied by the deposition of cholesterol and certain lipoprotein fractions in the lumen of blood vessels. The article discusses the history of atherosclerosis discovery, various theories of the development of atherosclerosis, main risk factors for the development of the disease. The main groups of biomarkers, their functions and specificity for the diagnosis of atherosclerosis are described, the diagnostic value of such methods as MR angiography, CT angiography and ultrasound is discussed. Different aspects of extra- and intracranial atherosclerosis are outlined. The main possibilities for developing therapeutic strategies to slow the progression and develop targeted therapy are considered, and the portrait of a patient with intracranial atherosclerosis, requiring screening, is described.

About the Authors

M. M. Tanashyan
Research Center of Neurology
Russian Federation

Moscow



O. V. Lagoda
Research Center of Neurology
Russian Federation

Moscow



A. A. Raskurazhev
Research Center of Neurology
Russian Federation

Moscow



V. A. Annushkin
Research Center of Neurology
Russian Federation

Moscow



A. S. Mazur
Research Center of Neurology
Russian Federation

Moscow



I. A. Sinitsyn
Research Center of Neurology
Russian Federation

Moscow



References

1. Boursin P., Paternotte S., Dercy B., Sabben C., Maïer B. Sé- mantique, épidémiologie et sémiologie des accidents vasculaires cérébraux [Semantics, epidemiology and semiology of stroke]. Soins. 2018;63(828):24–27. (In French). https://doi.org/10.1016/j.soin.2018.06.008

2. Marchand F. Ueber Atherosclerosis. Verhandlungen der Kongresse fuer Innere Medizin. 21 Kongresse, 1904.

3. Tatelman M. The angiographic evaluation of cerebral atherosclerosis. Radiology. 1958;70(6):801–10. https://doi.org/10.1148/70.6.801

4. Bezsonov E.E., Sobenin I.A., Orekhov A.N. Immunopathology of Atherosclerosis and Related Diseases: Focus on Molecular Biology. Internal Journal of Molecular Sciences. 2021;22(8):4080. https://doi.org/10.3390/ijms22084080

5. Barthels D., Das H. Current advances in ischemic stroke research and therapies. Biochimica et Biophysica Acta (BBA) — Molecular Basis of Disease. 2020;1866(4):165260. https://doi.org/10.1016/j.bbadis.2018.09.01

6. Hayman L.L. Prevention of Atherosclerotic Cardiovascular Disease in Childhood. Current Cardiology Reports. 2020;22(9):86. https://doi.org/10.1007/s11886-020-01332-y

7. Song P., Fang Z., Wang H., Cai Y., Rahimi K., Zhu Y. et al. Global and regional prevalence, burden, and risk factors for carotid atherosclerosis: a systematic review, meta-analysis, and modelling study. Lancet Global Health. 2020;8(5):e721–e729. https://doi.org/10.1016/S2214-109X(20)30117-0

8. Сергеева А.Н., Сергеев Д.В., Пирадов М.А. Интракраниальный атеросклероз: диагностика, клинические проявления, терапия. Эффективная фармакотерапия. 2014;6(52);44–50. [Sergeeva A.N., Sergeev D.V., Piradov M.A. Intracranial atherosclerosis: diagnostics, clinical manifestations, therapy. Effektivnaya farmakoterapiya. 2014;6(52);44–50. (In Russ.)].

9. Mazighi M., Labreuche J., Gongora-Rivera F., Duyckaerts C., Hauw J.-J., Amarenco P. Autopsy prevalence of intracranial atherosclerosis in patients with fatal stroke. Stroke. 2008;39(4):1142– 7. https://doi.org/10.1161/STROKEAHA.107.496513

10. Kim J.S., Nah H.-W., Park S.M., Kim S.-K, Cho K.H., Lee J. et al. Risk factors and stroke mechanisms in atherosclerotic stroke: intracranial compared with extracranial and anterior compared with posterior circulation disease. Stroke. 2012;43(12):3313–8. https://doi.org/10.1161/STROKEAHA.112.658500

11. Moossy J. Pathology of cerebral atherosclerosis. Influence of age, race, and gender. Stroke. 1993;24(12 Suppl):I22–3;I31–2.

12. Bae H.-J., Lee J., Park J.-M., Kwon O., Koo J.-S., Kim B.-K., Pandey D.K. Risk factors of intracranial cerebral atherosclerosis among asymptomatics. Cerebrovascular Diseases. 2007;24(4):355–60. https://doi.org/10.1159/000106982

13. López-Cancio E., Dorado L., Millán M., Reverté S., Suñol A., Massuet A. et al. The Barcelona-Asymptomatic Intracranial Atherosclerosis (AsIA) study: prevalence and risk factors. Atherosclerosis. 2012;221(1):221–5. https://doi.org/10.1016/j.atherosclerosis.2011.12.020

14. Kim J.S., Bonovich D. Research on intracranial atherosclerosis from the East and west: why are the results different? Journal of Stroke. 2014;16(3):105–13. https://doi.org/10.5853/jos.2014.16.3.105

15. Liu M., Gutierrez J. Genetic Risk Factors of Intracranial Atherosclerosis. Current Atherosclerosis Reports. 2020;22(4):13. https://doi.org/10.1007/s11883-020-0831-5

16. Bos D., van der Rijk M.J., Geeraedts T.E., Hofman A., Krestin G.P., Witteman J.C. et al. Intracranial carotid arteryatherosclerosis: prevalence and risk factors in the general population. Stroke. 2012;43(7):1878–84. https://doi.org/10.1161/STROKEAHA.111.648667

17. Sato S., Uehara T., Hayakawa M., Nagatsuka K., Minematsu K., Toyoda K. Intra- and extracranial atherosclerotic disease in acute spontaneous intracerebral hemorrhage. Journal of the Neurological Sciences. 2013;332(1-2):116–20. https://doi.org/10.1016/j.jns.2013.06.031

18. Park J.-H., Hong K.-S., Lee E.-J., Lee J., Kim D.-E. High levels of apolipoprotein B/AI ratio are associated with intracranial atherosclerotic stenosis. Stroke. 2011;42(11):3040–6. https://doi.org/10.1161/STROKEAHA.111.620104

19. Puig N., Jiménez-Xarrié E., Camps-Renom P., Benitez S. Search for Reliable Circulating Biomarkers to Predict Carotid Plaque Vulnerability. Internal Journal of Molecular Sciences. 2020;21(21):8236. https://doi.org/10.3390/ijms21218236

20. Murphy A.J., Akhtari M., Tolani S., Pagler T., Bijl N., Kuo C.-L. et al. ApoE regulates hematopoietic stem cell proliferation, monocytosis, and monocyte accumulation in atherosclerotic lesions in mice. The Journal of Clinical Investigation. 2011;121(10):4138–49. https://doi.org/10.1172/JCI57559

21. Ma Y.-Q., Plow E.F., Geng J.-G. P-selectin binding to P-selectin glycoprotein ligand-1 induces an intermediate state of alphaMbeta2 activation and acts cooperatively with extracellular stimuli to support maximal adhesion of human neutrophils. Blood. 2004;104(8):2549–56. https://doi.org/10.1182/blood-2004-03-1108

22. Veerman K.M., Carlow D.A., Shanina I., Priatel J.J., Horwitz M.S., Ziltener H.J. PSGL-1 regulates the migration and proliferation of CD8(+) T cells under homeostatic conditions. The Journal of Immunology. 2012;188(4):1638–46. https://doi.org/10.4049/jimmunol.1103026

23. Chistiakov D.A., Sobenin I.A., Orekhov A.N. Vascular extracellular matrix in atherosclerosis. Cardiology in Review. 2013;21(6):270–88. https://doi.org/10.1097/CRD.0b013e31828c5ced

24. Pourcet B., Staels B. Alternative macrophages in atherosclerosis: not always protective! The Journal of Clinical Investigation. 2018;128(3):910–912. https://doi.org/10.1172/JCI120123

25. Resch J.A, Baker A.B. Etiologic mechanisms in cerebral atherosclerosis. Preliminary study of 3,839 cases. JAMA Neurology. 1964;10:617–28. https://doi.org/10.1001/archneur.1964.00460180083008

26. Leung S.Y., Ng T.H., Yuen S.T., Lauder I.J., Ho F.C. Pattern of cerebral atherosclerosis in Hong Kong Chinese. Severity in intracranial and extracranial vessels. Stroke. 1993;24(6):779–86. https://doi.org/10.1161/01.str.24.6.779

27. Mathur K.S., Kashyap S.K., Mathur S.C. Distribution and severity of atherosclerosis of aorta, coronary and cerebral arteries in persons dying without morphologic evidence of atherosclerotic catastrophe in North India. A study of 900 autopsies. J. Assoc. Physicians India. 1968;16(2):113–22.

28. Velican C. Studies on the age-related changes occurring in human cerebral arteries. Atherosclerosis. 1970;11(3):509–29. https://doi.org/10.1016/0021-9150(70)90029-8

29. Zugibe F.T., Brown K.D. Histochemical studies in atherogenesis. Human cerebral arteries. Circulation Research. 1961;9:897–905. https://doi.org/10.1161/01.res.9.4.897

30. Nakamura M., Imaizumi K., Shigemi U., Nakashima Y., Kikuchi Y. Cerebral atherosclerosis in Japanese. Part 5: relationship between cholesterol deposition and glycosaminoglycans. Stroke. 1976;7(6):594–8. https://doi.org/10.1161/01.str.7.6.594

31. D’Armiento F.P., Bianchi A., de Nigris F., Capuzzi D.M., D’Armiento M.R., Crimi G. et al. Age-related effects on atherogenesis and scavenger enzymes of intracranial and extracranial arteries in men without classic risk factors for atherosclerosis. Stroke. 2001;32(11):2472–9. https://doi.org/10.1161/hs1101.098520

32. Cai H., Harrison D.G. Endothelial dysfunction in cardiovascular diseases: the role of oxidant stress. Circulation Research. 2000;87(10):840–4. https://doi.org/10.1161/01.res.87.10.840

33. Uehara T., Tabuchi M., Mori E. Risk factors for occlusive lesions of intracranial arteries in stroke-free Japanese. European Journal of Neurology. 2005;12(3):218–22. https://doi.org/10.1111/j.1468-1331.2004.00959.x

34. Wong K.S., Ng P.W., Tang A., Liu R., Yeung V., Tomlinson B. Prevalence of asymptomatic intracranial atherosclerosis in high-risk patients. Neurology. 2007;68(23):2035–8. https://doi.org/10.1212/01.wnl.0000264427.09191.89

35. Glagov S., Weisenberg E., Zarins C.K., Stankunavicius R., Kolettis G.J. Compensatory enlargement of human atherosclerotic coronary arteries. The New England Journal of Medicine. 1987;316(22):1371–5. https://doi.org/10.1056/NEJM198705283162204

36. Van den Wijngaard I.R., Holswilder G., van Walderveen M.A., Algra A., Wermer M.J., Zaidat O.O., Boiten J. Treatment and imaging of intracranial atherosclerotic stenosis: current perspectives and future directions. Brain and Behavior. 2016;6(11):e00536. https://doi.org/10.1002/brb3.536

37. Ma N., Jiang W.J., Lou X., Ma L., Du B., Cai J.F., Zhao T.Q. Arterial remodeling of advanced basilar atherosclerosis: a 3-tesla MRI study. Neurology. 2010;75(3):253–8. https://doi.org/10.1212/WNL.0b013e3181e8e714

38. Kasner S.E., Chimowitz M.I., Lynn M.J., Howlett-Smith H., Stern B.J., Hertzberg V.S. et al. Warfarin Aspirin Symptomatic Intracranial Disease Trial Investigators. Predictors of ischemic stroke in the territory of a symptomatic intracranial arterial stenosis. Circulation. 2006;113(4):555–63. https://doi.org/10.1161/CIRCULATIONAHA.105.578229

39. Mori T., Fukuoka M., Kazita K., Mori K. Follow-up study after intracranial percutaneous transluminal cerebral balloon angioplasty. AJNR American Journal of Neuroradiology. 1998;19(8):1525–33.

40. Schmidley J. 10 questions on central nervous system vasculitis. Neurologist. 2008;14(2):138–9. https://doi.org/10.1097/NRL.0b013e31815bdc2b

41. Saam T., Habs M., Pollatos O., Cyran C., Pfefferkorn T., Dichgans M. et al. High-resolution black-blood contrast-enhanced T1 weighted images for the diagnosis and follow-up of intracranial arteritis. The British Journal of Radiology. 2010;83(993):e182– 4. https://doi.org/10.1259/bjr/74101656

42. Qureshi A.I., Caplan L.R. Intracranial atherosclerosis. Lancet. 2014;383(9921):984–98. https://doi.org/10.1016/S0140-6736(13)61088-0

43. Cloft H.J., Lynn M.J., Feldmann E., Chimowitz M. Risk of cerebral angiography in patients with symptomatic intracranial atherosclerotic stenosis. Cerebrovascular Diseases. 2011;31(6):588–91. https://doi.org/10.1159/000324951

44. Танашян М.М., Раскуражев А.А., Шабалина А.А., Лагода О.В., Гнедовская Е.В. Биомаркеры церебрального атеросклероза: возможности ранней диагностики и прогнозирования индивидуального риска. Анналы клинической и экспериментальной неврологии. 2015;9(3);20– 25. [Tanashyan M.M., Raskurazhev A.A., Shabalina A.A., Lagoda O.V., Gnedovskaya E.V. Biomarkers of cerebral atherosclerosis: the capabilities of early diagnosis and prognosis of individual risk. Annaly klinicheskoy I eksperimental’noy nevrologii. 2015;9(3);20–25. (In Russ.)].

45. Barr T.L., Conley Y., Ding J., Dillman A., Warach S., Singleton A., Matarin M. Genomic biomarkers and cellular pathways of ischemic stroke by RNA gene expression profiling. Neurology. 2010;75(11):1009–14. https://doi.org/10.1212/WNL.0b013e3181f2b37f

46. Urra X., Cervera A., Obach V., Climent N., Planas A.M., Chamorro A. Monocytes are major players in the prognosis and risk of infection after acute stroke. Stroke. 2009;40(4):1262–8. https://doi.org/10.1161/STROKEAHA.108.532085

47. Ridker P.M., Everett B.M., Thuren T., MacFadyen J.G., Chang W.H., Ballantyne C. et al. CANTOS Trial Group. Antiinflammatory Therapy with Canakinumab for Atherosclerotic Disease. The New England Journal of Medicine. 2017;377(12):1119– 1131. https://doi.org/10.1056/NEJMoa1707914

48. Liberale L., Diaz-Cañestro C., Bonetti N.R., Paneni F., Akhmedov A., Beer J.H. et al. Post-ischaemic administration of the murine Canakinumab-surrogate antibody improves outcome in experimental stroke. European Heart Journal. 2018;39(38):3511– 3517. https://doi.org/10.1093/eurheartj/ehy286

49. Smith C.J., Hulme S., Vail A., Heal C., Parry-Jones A.R., Scarth S. et al. SCIL-STROKE (Subcutaneous Interleukin-1 Receptor Antagonist in Ischemic Stroke): A Randomized Controlled Phase 2 Trial. Stroke. 2018;49(5):1210–1216. https://doi.org/10.1161/STROKEAHA.118.020750

50. Sander D., Winbeck K., Klingelhöfer J., Etgen T., Conrad B. Reduced progression of early carotid atherosclerosis after antibiotic treatment and Chlamydia pneumoniae seropositivity. Circulation. 2002;106(19):2428–33. https://doi.org/10.1161/01.cir.0000036748.26775.8d

51. Hadjiphilippou S., Ray K.K. Evolocumab and clinical outcomes in patients with cardiovascular disease. Journal of the Royal College of Physicians of Edinburgh. 2017;47(2):153–155. https://doi.org/10.4997/JRCPE.2017.212. PMID: 28675189

52. Shingai Y., Kimura N., Doijiri R., Takahashi K., Yokosawa M., Kanoke A. et al. Effect of Preoperative Administration of Proprotein Convertase Subtilisin/Kexin Type 9 Inhibitor on Carotid Artery Stenting. World Neurosurgery. 2020;135:e36–e42. https://doi.org/10.1016/j.wneu.2019.10.095

53. Bowman L., Hopewell J.C., Chen F., Wallendszus K., Stevens W., Collins R., HPS3/TIMI55–REVEAL Collaborative Group et al. Effects of Anacetrapib in Patients with Atherosclerotic Vascular Disease. The New England Journal of Medicine. 2017;377(13):1217–1227. https://doi.org/10.1056/NEJMoa1706444

54. Thompson A., Di Angelantonio E., Sarwar N., Erqou S., Saleheen D., Dullaart R.P. et al. Association of cholesteryl ester transfer protein genotypes with CETP mass and activity, lipid levels, and coronary risk. JAMA. 2008;299(23):2777–88. https://doi.org/10.1001/jama.299.23.2777

55. Burke A.C., Telford D.E., Huff M.W. Bempedoic acid: effects on lipoprotein metabolism and atherosclerosis. Current Opinion in Lipidology. 2019;30(1):1–9. https://doi.org/10.1097/MOL.0000000000000565

56. Laufs U., Banach M., Mancini G.B.J., Gaudet D., Bloedon L.T., Sterling L.R. et al. Efficacy and Safety of Bempedoic Acid in Patients With Hypercholesterolemia and Statin Intolerance. J Am Heart Association. 2019;8(7):e011662. https://doi.org/10.1161/JAHA.118.011662

57. Goldberg A.C., Leiter L.A., Stroes E.S.G., Baum S.J., Hanselman J.C., Bloedon L.T. et al. Effect of Bempedoic Acid vs Placebo Added to Maximally Tolerated Statins on Low-Density Lipoprotein Cholesterol in Patients at High Risk for Cardiovascular Disease: The CLEAR Wisdom Randomized Clinical Trial. JAMA. 2019;322(18):1780–1788. https://doi.org/10.1001/jama.2019.16585


Review

For citations:


Tanashyan M.M., Lagoda O.V., Raskurazhev A.A., Annushkin V.A., Mazur A.S., Sinitsyn I.A. Extra- versus intracranial atherosclerosis: two facets of the same problem. Russian neurological journal. 2022;27(3):11-19. (In Russ.) https://doi.org/10.30629/2658-7947-2022-27-3-11-19

Views: 893


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2658-7947 (Print)
ISSN 2686-7192 (Online)